Tight junctions are macromolecular structures that traverse the space between adjacent cells in epithelia and endothelia. Members of the claudin family are known to determine tight junction permeability in a charge- and size-selective manner. Here, we use molecular dynamics simulations to build and refine an atomic model of claudin-15 channels and study its transport properties. Our simulations indicate that claudin-15 forms well-defined channels for ions and molecules and otherwise "seals" the paracellular space through hydrophobic interactions. Ionic currents, calculated from simulation trajectories of wild-type as well as mutant channels, reflect in vitro measurements. The simulations suggest that the selectivity filter is formed by a cage of four aspartic acid residues (D55), contributed by four claudin-15 molecules, which creates a negative electrostatic potential to favor cation flux over anion flux. Charge reversal or charge ablation mutations of D55 significantly reduce cation permeability in silico and in vitro, whereas mutations of other negatively charged pore amino acid residues have a significantly smaller impact on channel permeability and selectivity. The simulations also indicate that water and small ions can pass through the channel, but larger cations, such as tetramethylammonium, do not traverse the pore. Thus, our model provides an atomic view of claudin channels, their transport function, and a potential three-dimensional organization of its selectivity filter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028499 | PMC |
http://dx.doi.org/10.1085/jgp.201711868 | DOI Listing |
J Air Waste Manag Assoc
January 2025
School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, China.
Dust emissions from open-pit mining pose a significant threat to environmental safety and human health. Currently, the range of dust suppressants used in coal mining is limited, often failing to account for their suitability across various stockpiles. This oversight results in poor infiltration after application, leading to insufficient crust formation and reduced durability.
View Article and Find Full Text PDFAnal Sci
January 2025
Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, TRNC, Mersin 10, 99138, Nicosia, Turkey.
In this research, a green approach utilizing deep eutectic solvent liquid-liquid microextraction is combined with smartphone digital image colorimetry for the determination of boron in nut samples. A smartphone camera was used to capture the image of the analyte extract located in a custom-made colorimetric box. Using ImageJ software, the images were split into RGB channels, with the green channel identified as the optimum.
View Article and Find Full Text PDFRadiology
January 2025
Stanford University School of Medicine, Department of Radiation Oncology, Stanford, CA, US.
Background Detection and segmentation of lung tumors on CT scans are critical for monitoring cancer progression, evaluating treatment responses, and planning radiation therapy; however, manual delineation is labor-intensive and subject to physician variability. Purpose To develop and evaluate an ensemble deep learning model for automating identification and segmentation of lung tumors on CT scans. Materials and Methods A retrospective study was conducted between July 2019 and November 2024 using a large dataset of CT simulation scans and clinical lung tumor segmentations from radiotherapy plans.
View Article and Find Full Text PDFErgonomics
January 2025
School of Art and Design, Beijing Forestry University, Beijing, China.
This study simulates the natural movement of plants in indoor environments to investigate whether these plants can effectively facilitate psychological, physiological, and emotional recovery from fatigue caused by short vigilance tasks. A total of 63 participants completed baseline assessments of emotional and physiological stress as well as attention and memory (including the POMS-SF, blood pressure, pulse, and Digit Span Backward). They then performed a vigilance task to induce fatigue, followed by a second measurement of stress and cognition.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.
Objective: The present study aims to develop and evaluate the voriconazole-loaded thermoresponsive hydrogel using tools.
Methods: Poloxamer 407 and PEG 400 were selected as the components from studies for thermoresponsive hydrogel of voriconazole. The cohesive energy density (CED) and solubility parameters (SP) were calculated using Biovia Material Studio 2022 software to predict the polymer-polymer miscibility and drug-polymer miscibility.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!