ER-phagy requires Lnp1, a protein that stabilizes rearrangements of the ER network.

Proc Natl Acad Sci U S A

Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0668

Published: July 2018

The endoplasmic reticulum (ER) forms a contiguous network of tubules and sheets that is predominantly associated with the cell cortex in yeast. Upon treatment with rapamycin, the ER undergoes degradation by selective autophagy. This process, termed ER-phagy, requires Atg40, a selective autophagy receptor that localizes to the cortical ER. Here we report that ER-phagy also requires Lnp1, an ER membrane protein that normally resides at the three-way junctions of the ER network, where it serves to stabilize the network as it is continually remodeled. Rapamycin treatment increases the expression of Atg40, driving ER domains marked by Atg40 puncta to associate with Atg11, a scaffold protein needed to form autophagosomes. Although Atg40 largely localizes to the cortical ER, the autophagy machinery resides in the cell interior. The localization of Atg40 to sites of autophagosome formation is blocked in an Δ mutant or upon treatment of wild-type cells with the actin-depolymerizing drug Latrunculin A. This prevents the association of Atg40 with Atg11 and the packaging of the ER into autophagosomes. We propose that Lnp1 is needed to stabilize the actin-dependent remodeling of the ER that is essential for ER-phagy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6142256PMC
http://dx.doi.org/10.1073/pnas.1805032115DOI Listing

Publication Analysis

Top Keywords

er-phagy requires
12
requires lnp1
8
selective autophagy
8
localizes cortical
8
atg40
6
er-phagy
4
lnp1 protein
4
protein stabilizes
4
stabilizes rearrangements
4
network
4

Similar Publications

Deacetylated SNAP47 recruits HOPS to facilitate autophagosome-lysosome fusion independent of STX17.

Nat Commun

January 2025

School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Autophagy, a conserved catabolic process implicated in a diverse array of human diseases, requires efficient fusion between autophagosomes and lysosomes to function effectively. Recently, SNAP47 has been identified as a key component of the dual-purpose SNARE complex mediating autophagosome-lysosome fusion in both bulk and selective autophagy. However, the spatiotemporal regulatory mechanisms of this SNARE complex remain unknown.

View Article and Find Full Text PDF

Objective: To explore more and better liquid biopsy markers of exosomal microRNAs (exo-miRNAs) in renal interstitial fibrosis (RIF) and to preliminary investigate the biological functions and signaling pathways involved in these markers.

Materials And Methods: High-throughput miRNA sequencing was performed on blood and urine exo-miRNAs from three RIF patients and three healthy volunteers, and differential expression analysis and bioinformatic processing were performed.

Results: There were 13 differentially expressed exo-miRNA (DEexo-miRNA) between RIF and healthy blood, and 20 DEexo-miRNAs in urine.

View Article and Find Full Text PDF

Close cooperation between Semi1 and Semi2 proteins is essential for pronuclear positioning in .

Mol Biol Cell

January 2025

Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo 156-8550, Japan.

During sexual reproduction in the ciliate , meiosis occurs in the germline micronucleus, resulting in the formation of four haploid micronuclei. Of these, only one is selected to evade autophagy, and subsequently migrates to the membrane junction with the partner cell for reciprocal pronuclear exchange. We previously demonstrated that the transmembrane protein Semi1 is essential for this nuclear migration.

View Article and Find Full Text PDF

The heterodimeric Rab3GAP complex is a guanine nucleotide exchange factor (GEF) for the Rab18 GTPase that regulates lipid droplet metabolism, ER-to-Golgi trafficking, secretion, and autophagy. Why both subunits of Rab3GAP are required for Rab18 GEF activity and the molecular basis of how Rab3GAP engages and activates its cognate substrate are unknown. Here we show that human Rab3GAP is conformationally flexible and potentially autoinhibited by the C-terminal domain of its Rab3GAP2 subunit.

View Article and Find Full Text PDF

ARGONAUTE (AGO) proteins bind to small non-coding RNAs to form RNA-induced silencing complexes. In the RNA-bound state, AGO is stable while RNA-free AGO turns over rapidly. Molecular features unique to RNA-free AGO that allow its specific recognition and degradation remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!