A pan-azole-resistant strain with the mutations Gly138Ser and Asn248Lys was isolated from a patient receiving long-term voriconazole treatment. PCR fragments containing with the mutations were introduced along with the Cas9 protein and single guide RNA into the azole-resistant/susceptible strains. Recombinant strains showed increased susceptibility via the replacement of Ser138 by glycine. Genetic recombination, which has been hampered thus far in clinical isolates, can now be achieved using CRISPR/Cas9 genome editing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6125507PMC
http://dx.doi.org/10.1128/AAC.00894-18DOI Listing

Publication Analysis

Top Keywords

crispr/cas9 genome
8
genome editing
8
editing demonstrate
4
demonstrate contribution
4
contribution cyp51a
4
cyp51a gly138ser
4
gly138ser azole
4
azole resistance
4
resistance aspergillus
4
aspergillus fumigatus
4

Similar Publications

Review: Recent advances in unraveling the genetic architecture of kernel row number in maize.

Plant Sci

December 2024

Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 65000, China. Electronic address:

Kernel row number (KRN) is an important trait in maize that significantly impacts maize yield. The high heritability of KRN underscores its significance in maize breeding programs. In this review, we summarize recent advances in understanding the mechanisms underlying the formation, differentiation, and regulation of KRN in maize.

View Article and Find Full Text PDF

[Donor DNA Modification with Cas9 Targeting Sites Improves the Efficiency of MTC34 Knock-in into the CXCR4 Locus].

Mol Biol (Mosk)

December 2024

Center of Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia.

To successfully apply the genome editing technology using the CRISPR/Cas9 system in the clinic, it is necessary to achieve a high efficiency of knock-in, which is insertion of a genetic construct into a given locus of the target cell genome. One of the approaches to increase the efficiency of knock-in is to modify donor DNA with the same Cas9 targeting sites (CTS) that are used to induce double-strand breaks (DSBs) in the cell genome (the double-cut donor method). Another approach is based on introducing truncated CTS (tCTS), including a PAM site and 16 proximal nucleotides, into the donor DNA.

View Article and Find Full Text PDF

[Methods to Increase the Efficiency of Knock-in of a Construct Encoding the HIV-1 Fusion Inhibitor, MT-C34 Peptide, into the CXCR4 Locus in the CEM/R5 T Cell Line].

Mol Biol (Mosk)

December 2024

Center of Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia.

The low knock-in efficiency, especially in primary human cells, limits the use of the genome editing technology for therapeutic purposes, rendering it important to develop approaches for increasing the knock-in levels. In this work, the efficiencies of several approaches were studied using a model of knock-in of a construct coding for the peptide HIV fusion inhibitor MT-C34 into the human CXCR4 locus in the CEM/R5 T cell line. First, donor DNA modification was evaluated as a means to improve the efficiency of plasmid transport into the nucleus.

View Article and Find Full Text PDF

The application of CRISPR/Cas9-based genome-wide screening to disease research.

Mol Cell Probes

December 2024

Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China. Electronic address:

High-throughput genetic screening serves as an indispensable approach for deciphering gene functions and the intricate relationships between phenotypes and genotypes. The CRISPR/Cas9 system, with its ability to precisely edit genomes on a large scale, has revolutionized the field by enabling the construction of comprehensive genomic libraries. This technology has become a cornerstone for genome-wide screenings in disease research.

View Article and Find Full Text PDF

Studies of the FBT family transporters in Leishmania infantum by gene deletion and protein localization.

Exp Parasitol

December 2024

Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada. Electronic address:

The protozoan parasite Leishmania has a large family of major facilitator membrane proteins part of the Folate Biopterin Transporter (FBT) family. The chromosome 10 of Leishmania has a cluster of 7 FBT genes including the S-Adenosyl methionine (AdoMet) transporter and the functionally characterized folate transporters FT1 and FT5. Six of the 7 FBT proteins coded by this locus are located at the plasma membrane as determined by gene fusions with the green fluorescent protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!