Motifome comparison between modern human, Neanderthal and Denisovan.

BMC Genomics

Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, College of Medicine, Omaha, NE, 68198-5145, USA.

Published: June 2018

Background: The availability of the genomes of two archaic humans, Neanderthal and Denisovan, and that of modern humans provides researchers an opportunity to investigate genetic differences between these three subspecies on a genome-wide scale. Here we describe an algorithm that predicts statistically significant motifs based on the difference between a given motif's actual and expected distributions. The algorithm was previously applied to plants but was modified for this work.

Results: The result of applying the algorithm to the human, Neanderthal, and Denisovan genomes is a catalog of potential regulatory motifs in these three human subspecies. We examined the distributions of these motifs in genetic elements including human retroviruses, human accelerated regions, and human accelerated conserved noncoding sequences regions. Differences in these distributions could be the origin of differences in phenotype between the three subspecies. Twenty significant motifs common to all three genomes were found; thirty-three were found in endogenous retroviruses in Neanderthal and Denisovan. Ten of these motifs mapped to the 22 bp core of MiR-1304. The core of this genetic element regulates the ENAM and AMTN genes, which take part in odontogenesis and whose 3' UTRs contained significant motifs. The introns of 20 genes were found to contain a large number of significant motifs, which were also overrepresented in 49 human accelerated regions. These genes include NAV2, SorCS2, TRAPPC9, GRID1, PRDM16, CAMTA1, and ASIC which are all involved in neuroregulation. Further analysis of these genes using the GO database indicates that many are associated with neurodevelopment. Also, varying numbers of significant motifs were found to occur in regions of the Neanderthal and Denisovan genomes that are missing from the human genome, suggesting further functional differences between modern and archaic humans.

Conclusion: Although Neanderthal and Denisovan are now extinct, detailed examination of elements from their genomes can shed light on possible phenotypic and cognitive differences between these two archaic human subspecies and modern humans. Genetic similarities and differences between these three subspecies and other fossil hominids would also be of interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6006668PMC
http://dx.doi.org/10.1186/s12864-018-4710-1DOI Listing

Publication Analysis

Top Keywords

neanderthal denisovan
24
three subspecies
12
human accelerated
12
human
9
human neanderthal
8
modern humans
8
differences three
8
motifs
8
denisovan genomes
8
human subspecies
8

Similar Publications

Tracing the Evolution of Human Immunity Through Ancient DNA.

Annu Rev Immunol

December 2024

1Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Human Evolutionary Genetics Unit, Paris, France; email:

Infections have imposed strong selection pressures throughout human evolution, making the study of natural selection's effects on immunity genes highly complementary to disease-focused research. This review discusses how ancient DNA studies, which have revolutionized evolutionary genetics, increase our understanding of the evolution of human immunity. These studies have shown that interbreeding between modern humans and Neanderthals or Denisovans has influenced present-day immune responses, particularly to viruses.

View Article and Find Full Text PDF
Article Synopsis
  • Genomic and ancient DNA data have dramatically changed our understanding of human evolution, particularly with the successful sequencing of Neanderthal and Denisovan genomes.
  • The theory of interbreeding between Neanderthals and Homo sapiens has evolved from skepticism to general acceptance, largely based on statistical models that may overlook the complexities of population structure.
  • Research using simulated data revealed that many existing models inaccurately identified admixture events and emphasized the need to consider population structure for a more accurate understanding of human evolutionary history.
View Article and Find Full Text PDF

Archaic hominin admixture and its consequences for modern humans.

Curr Opin Genet Dev

November 2024

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton 08540, USA. Electronic address:

As anatomically modern humans dispersed out of Africa, they encountered and mated with now extinct hominins, including Neanderthals and Denisovans. It is now well established that all non-African individuals derive approximately 2% of their genome from Neanderthal ancestors and individuals of Melanesian and Australian aboriginal ancestry inherited an additional 2%-5% of their genomes from Denisovan ancestors. Attention has started to shift from documenting amounts of archaic admixture and identifying introgressed segments to understanding their molecular, phenotypic, and evolutionary consequences and refining models of human history.

View Article and Find Full Text PDF

The identification of a new hominin group in the Altai mountains called Denisovans was one of the most exciting discoveries in human evolution in the last decade. Unlike Neanderthal remains, the Denisovan fossil record consists of only a finger bone, jawbone, teeth and skull fragments. Leveraging the surviving Denisovan segments in modern human genomes has uncovered evidence of at least three introgression events from distinct Denisovan populations into modern humans in the past.

View Article and Find Full Text PDF

The ability to metabolize lactose in adulthood is associated with the persistence of lactase enzyme activity. In European populations, lactase persistence is determined mainly by the presence of the rs4988235-T variant in the MCM6 gene, which increases the expression of the LCT gene, encoding lactase. The highest rates of lactase persistence are characteristic of Europeans, and the lowest rates are found in East Asian populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!