Emerging opportunities based on two-dimensional (2D) layered structures can utilize a variety of complex geometric architectures. Herein, we report the synthesis and properties of a 2D+0D unique ternary platform-core-shell nanostructure, termed Ag@Cu₂O-rGO, where the reduced graphene oxide (rGO) 2D acting as a platform is uniformly decorated by Ag@Cu₂O core-shell nanoparticles. Cu₂O nanoparticles occupy the defect positions on the surface of the rGO platform and restore the conjugation of the rGO structure, which contributes to the significant decrease of the / intensity ratio. The rGO platform can not only bridge the isolated nanoparticles together but also can quickly transfer the free electrons arising from the Ag core to the Cu₂O shell to improve the utilization efficiency of photogenerated electrons, as is verified by high efficient photocatalytic activity of Methyl Orange (MO). The multi-interface coupling of the Ag@Cu₂O-rGO platform-core-shell nanostructure leads to the decrease of the bandgap with an increase of the Cu₂O shell thickness, which broadens the absorption range of the visible light spectrum.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027245PMC
http://dx.doi.org/10.3390/nano8060444DOI Listing

Publication Analysis

Top Keywords

platform-core-shell nanostructure
8
rgo platform
8
cu₂o shell
8
situ synthesis
4
synthesis ag@cu₂o-rgo
4
ag@cu₂o-rgo architecture
4
architecture strong
4
strong light-matter
4
light-matter interactions
4
interactions emerging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!