The most ubiquitous gap junction protein within the body, connexin 43 (Cx43), is a target of interest for modulating the dermal wound healing response. Observational studies found associations between Cx43 at the wound edge and poor healing response, and subsequent studies utilizing local knockdown of Cx43 found improvements in wound closure rate and final scar appearance. Further preclinical work conducted using Cx43-based peptide therapeutics, including alpha connexin carboxyl terminus 1 (αCT1), a peptide mimetic of the Cx43 carboxyl terminus, reported similar improvements in wound healing and scar formation. Clinical trials and further study into the mode of action have since been conducted on αCT1, and Phase III testing for treatment of diabetic foot ulcers is currently underway. Therapeutics targeting connexin activity show promise in beneficially modulating the human body’s natural healing response for improved patient outcomes across a variety of injuries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032231PMC
http://dx.doi.org/10.3390/ijms19061778DOI Listing

Publication Analysis

Top Keywords

wound healing
12
healing response
12
dermal wound
8
improvements wound
8
carboxyl terminus
8
wound
5
healing
5
connexin
4
connexin 43-based
4
43-based therapeutics
4

Similar Publications

Spiny mice (Acomys spp.) are warm-blooded (homeothermic) vertebrates whose ability to restore missing tissue through regenerative healing has coincided with the evolution of unique cellular and physiological adaptations across different tissue types. This review seeks to explore how these bizarre rodents deploy unique or altered injury response mechanisms to either enhance tissue repair or fully regenerate excised tissue compared to closely related, scar-forming mammals.

View Article and Find Full Text PDF

Engineered Microneedle System Enables the Smart Regulation of Nanodynamic Sterilization and Tissue Regeneration for Wound Management.

Adv Sci (Weinh)

January 2025

Department of Laboratory Medicine, School of Chemical Science and Engineering, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, 200092, P. R. China.

The healing of bacterial biofilm-infected wounds is a complex process, and the construction of emerging therapeutic modalities that regulate the microenvironment to magnify therapeutic effects and reduce biotoxicity is still highly challenging. Herein, an engineered microneedle (MN) patch is reported to mediate the efficient delivery of black phosphorus nanosheets (BP NSs) and copper peroxide nanodots (CP NDs) for dual nanodynamic sterilization and methicillin-resistant staphylococcus aureus (MRSA)-infected wound healing. Results demonstrate that the system can eliminate biofilm, reduce cytotoxicity, promote angiogenesis and tissue regeneration by the multiple advantages of chemodynamic therapy (CDT), enhanced photodynamic therapy (PDT), and improved degradation process from BP NSs to phosphate for promoting cell proliferation.

View Article and Find Full Text PDF

Developing a Risk Score for Predicting Multiple Revision Surgeries in Patients With Fracture-Related Infections.

J Am Acad Orthop Surg

January 2025

From the Department of Orthopaedic Surgery, University of Alabama at Birmingham, Birmingham, AL (Yeager, Rutz, Strother, Spitler, and Johnson), and the Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL (Gross, Benson, and Carter).

Introduction: Postoperative infections are a leading cause of morbidity following fracture repair. The purpose of this study is to develop a risk score predicting fracture-related infection (FRI) that will require one versus multiple revision surgeries related to infection eradication and bone healing.

Methods: This is a retrospective cohort study conducted at a single level I trauma center from 2013 to 2020.

View Article and Find Full Text PDF

Impaired wound healing affects the life quality of patients and causes a substantial financial burden. Hydrogen-rich medium is reported to have antioxidant and anti-inflammatory effects. However, the role of hydrogen-rich saline (HRS) in cutaneous wound healing remains largely unexplored, especially by metabolomics.

View Article and Find Full Text PDF

In Situ Self-Assembled Naringin/ZIF-8 Nanoparticle-Embedded Bacterial Cellulose Sponges for Infected Diabetic Wound Healing.

ACS Appl Mater Interfaces

January 2025

Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.

The treatment of diabetic foot ulcers (DFUs) represents a significant challenge due to the complexity of the wound microenvironment. Several factors, including infection, inflammation, and impaired angiogenesis, can complicate the healing process and reduce the effectiveness of current clinical treatments. To address these challenges, this work develops a multifunctional sponge containing a zeolitic imidazolate framework-8/bacterial cellulose (ZIF-8/BC) matrix loaded with the antioxidant naringin (Nar).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!