A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intrathecal administration of antioxidants attenuates mechanical pain hypersensitivity induced by REM sleep deprivation in the rat. | LitMetric

Background Sleep deprivation as well as peripheral neuropathy and cutaneous neurogenic inflammation has a facilitatory effect on pain perception. Here we studied whether oxidative stress-related mechanisms in the spinal cord that have been shown to contribute to pain facilitation in peripheral neuropathy and cutaneous neurogenic inflammation play a role in sleep deprivation-induced pain hypersensitivity Methods Flower pot method was used to induce rapid eye movement sleep deprivation (REMSD) of 48 h duration in the rat that had a chronic intrathecal (i.t.) catheter for spinal administration of drugs. Pain behavior was assessed by determining the monofilament-induced limb withdrawal response. Results REMSD of 48 h produced mechanical hypersensitivity that was attenuated in a dose-related fashion by i.t. administration of two different antioxidants, phenyl-N-tert-butylnitrone (PBN) or 4-hydroxy-2,2,6,6-tetramethylpiperidine-1 oxyl (TEMPOL). While both antioxidants attenuated mechanical pain behavior also in control animals, their effects were significantly stronger after REMSD than in control conditions. Conversely, i.t. administration of a reactive oxygen species (ROS) donor, tert-butylhydroperoxide (t-BOOH), in control animals produced pain hypersensitivity that was prevented by i.t. pretreatment with an antioxidant, TEMPOL. I.t. treatment with PBN or TEMPOL at the currently used doses failed to influence motor behavior in the Rotarod test. Conclusions The results indicate that among common mechanisms contributing to mechanical pain hypersensitivity following sleep deprivation as well as nerve injury or neurogenic inflammation is oxidative stress in the spinal cord. Implications Compounds with antioxidant properties might prove useful in suppressing the vicious pronociceptive interaction between chronic pain and sleep-deprivation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.sjpain.2011.01.001DOI Listing

Publication Analysis

Top Keywords

pain hypersensitivity
16
sleep deprivation
16
mechanical pain
12
neurogenic inflammation
12
pain
9
administration antioxidants
8
deprivation well
8
peripheral neuropathy
8
neuropathy cutaneous
8
cutaneous neurogenic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!