Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Epidemiologic studies have reported relationships between maternal high folate and/or low B status during pregnancy and greater adiposity and insulin resistance in children. The goal of this study was to determine the effects of maternal folic acid supplementation (10 mg/kg diet), with (50 μg/kg diet) and without B, on adult female offspring adiposity and glucose homeostasis. Female C57BL/6J mice were fed 1 of 3 diets from weaning and throughout breeding, pregnancy, and lactation: control (2 mg/kg diet folic acid, 50 μg/kg diet B), supplemental folic acid with no B (SFA-B), or supplemental folic acid with adequate B (SFA+B). Female offspring were weaned onto the control diet or a Western diet (45% energy fat, 2 mg/kg diet folic acid, 50 μg/kg diet B) for 35 wk. After weaning, control diet-fed offspring with SFA-B dams had fasting hyperglycemia, glucose intolerance, lower β cell mass, and greater islet hepatocyte nuclear factor 1 homeobox α and nuclear receptor subfamily 1 group H member 3 mRNA than did offspring from control dams. In Western diet-fed offspring, those with SFA-B dams had lower fasting blood glucose and plasma insulin concentrations, and were smaller than control offspring. Our findings suggest that maternal folic acid supplementation with B deficiency during pregnancy/lactation programs the metabolic health of adult female offspring but is dependent on offspring diet.-Henderson, A. M., Tai, D. C., Aleliunas, R. E., Aljaadi, A. M., Glier, M. B., Xu, E. E., Miller, J. W., Verchere, C. B., Green, T. J., Devlin, A. M. Maternal folic acid supplementation with vitamin B deficiency during pregnancy and lactation affects the metabolic health of adult female offspring but is dependent on offspring diet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.201701503RR | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!