Excessive fluoride (F) intake decreases the development of potential oocytes by inducing oxidative stress and apoptosis in female mice in our previous study. This study aims to investigate the underlying mechanisms of F-induced follicular developmental dysplasia. Pathomorphological changes in the ovary tissues were observed under light and transmission electron microscopes. DNA damage and proliferation in granulosa cells were analysed by TUNEL staining and BrdU measurement. The protein expression of cell proliferation related regulatory factors including JNK, STAT3, STAT5, CDK2, CDK4, PCNA and Ki67 in the ovary tissues was measured by immunohistochemistry and Western blot analyses. Results indicated that the structure of granulosa cells in the ovary was seriously damaged by excessive F, evident by the swollen endoplasmic reticulum, mitochondria with vacuoles and nucleus shrinkage. F treatment also considerably enhanced the apoptosis and inhibited the proliferation of granulosa cells. The number of granulosa cells around the oocyte decreased after F treatment. The expression levels of STAT3, CDK2, CDK4 and Ki67 in the ovary tissues were up-regulated, and STAT5 and PCNA did not change significantly after F treatment, whereas JNK expression was down-regulated with increasing F dose. In summary, changes in the expression levels of JNK, STAT3, STAT5, CDK2, CDK4, PCNA and Ki67 in the JNK/STAT signalling pathway are involved in F-induced follicular dysplasia in the ovary.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.06.086DOI Listing

Publication Analysis

Top Keywords

granulosa cells
16
ovary tissues
12
cdk2 cdk4
12
jnk/stat signalling
8
signalling pathway
8
pathway involved
8
follicular developmental
8
developmental dysplasia
8
female mice
8
f-induced follicular
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!