The effects of climate change and extreme weather conditions on plants and animals have been documented extensively. However, the possible effects of these factors on plant-insect interactions in subtropical regions are relatively unexplored. The present study investigated the consequences of elevated CO2 and temperature on a tritrophic system (plant-insect-parasitoid) in subtropical regions. The experimental conditions were as follows: ambient CO2, 500 ppm; elevated CO2, 1,000 ppm; ambient temperature, 24/21°C (day/night); and elevated temperature, 29/26°C (day/night). Brassica oleracea var. italica foliar primary metabolites were quantified 6 wk after germination and insect feeding bioassays were subsequently conducted. Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) larvae were fed directly on these plants until pupal development. In addition, the second instar S. litura larvae were exposed to the parasitoid Snellenius manilae (Ashmead) (Hymenoptera: Braconidae) under the same plant treatment conditions. The results suggested that elevated CO2 has a major influence on plant performance and foliar quality. Elevated CO2 also affected the leaf area, foliar fresh and dry weights, and total nitrogen and carbohydrate contents. Elevated temperature reduced the larval development time and increased the growth rate of S. litura. Sn. manilae had a higher parasitism rate and shorter development time at elevated temperature compared with ambient temperature. These results suggested that the dynamic and communal structure of S. litura and its parasitoids requires comprehensive evaluation in terms of the changes in nutritional quality (bottom-up control) caused by the interactive effects of CO2 and temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ee/nvy056DOI Listing

Publication Analysis

Top Keywords

elevated co2
20
co2 temperature
12
elevated temperature
12
elevated
8
temperature
8
subtropical regions
8
ambient temperature
8
development time
8
co2
7
subtropical tritrophic
4

Similar Publications

The (PSS) experiment was part of the European Space Agency's mission and was conducted on the International Space Station from 2014 to 2016. The PSS experiment investigated the properties of montmorillonite clay as a protective shield against degradation of organic compounds that were exposed to elevated levels of ultraviolet (UV) radiation in space. Additionally, we examined the potential for montmorillonite to catalyze UV-induced breakdown of the amino acid alanine and its potential to trap the resulting photochemical byproducts within its interlayers.

View Article and Find Full Text PDF

Optical properties and photobleaching of wildfire ashes aqueous extracts.

Environ Sci Process Impacts

January 2025

Department of Civil, Environmental and Architectural Engineering, University of Colorado at Boulder, Boulder, 80309, USA.

Wildfires can severely degrade soils and watersheds. Post-fire rain events can leach ashes and altered dissolved organic matter (DOM) into streams, impacting water quality and carbon biogeochemistry. The photochemical properties and persistence of DOM from wildfire ash leachates are not well understood.

View Article and Find Full Text PDF

Background: Intrabdominal pressure (IAP) is an important parameter. Elevated IAP can reduce visceral perfusion, lead to intraabdominal hypertension, and result in life-threatening abdominal compartment syndrome. While ingestible capsular devices have been used for various abdominal diagnoses, their application in continuous IAP monitoring remains unproven.

View Article and Find Full Text PDF

The hypercapnic environment on the International Space Station (ISS): A potential contributing factor to ocular surface symptoms in astronauts.

Life Sci Space Res (Amst)

February 2025

Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States; Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas, United States; Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, New York, United States; Department of Ophthalmology, University of Texas Medical Branch, Galveston, Texas, United States; University of Texas MD Anderson Cancer Center, Houston, Texas, United States; Texas A&M College of Medicine, Texas, United States; Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States; The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, United States.

With increasing advancements and efforts towards space exploration, there is a pressing need to understand the impacts of spaceflight on astronauts' health. Astronauts have reported signs and symptoms of dry eye disease upon traveling to the International Space Station (ISS), thus necessitating an evaluation of the factors that contribute to the onset of spaceflight associated dry eye disease. Prior literature describes the hypercapnic environment of the ISS; however, the link between the high CO levels and astronauts' symptoms of dry eye disease remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!