Use of FEP flow reactor technology allows access to gram quantities of photochemically-generated tricyclic aziridines. These undergo a range of novel palladium-catalyzed ring-opening and cycloaddition reactions, likely driven by their inherent strain, allowing incorporation of further functionality by fusing additional heterocyclic rings onto these already complex polycyclic cores. This rapid, 2-step access to complex sp - rich heterocycles should be of interest to those in the fields of drug discovery and natural product synthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977501 | PMC |
http://dx.doi.org/10.1039/c5sc04062k | DOI Listing |
Nat Commun
December 2024
Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
Metal halide perovskites show promise for next-generation light-emitting diodes, particularly in the near-infrared range, where they outperform organic and quantum-dot counterparts. However, they still fall short of costly III-V semiconductor devices, which achieve external quantum efficiencies above 30% with high brightness. Among several factors, controlling grain growth and nanoscale morphology is crucial for further enhancing device performance.
View Article and Find Full Text PDFACS Cent Sci
December 2024
Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands.
The blood-brain barrier (BBB) presents one of the main obstacles to delivering anticancer drugs in glioblastoma. Herein, we investigated the potential of a series of cyclic ruthenium-peptide conjugates as photoactivated therapy candidates for the treatment of this aggressive tumor. The three compounds studied, , , and ([Ru(Phphen) Ac-XRGDX-NH)]Cl with Phphen = 4,7-diphenyl-1,10-phenanthroline and X, X = His or Met), include an integrin-targeted pentapeptide coordinated to a ruthenium warhead via two photoactivated ruthenium-X bonds.
View Article and Find Full Text PDFMar Environ Res
December 2024
Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study, Shenzhen University, Shenzhen, China. Electronic address:
The ongoing decline in seawater pH, driven by the absorption of excess atmospheric CO, represents a major environmental issue. This reduction in pH can interact with metal pollution, resulting in complex effects on marine phytoplankton. In this study, we examined the combined impacts of seawater acidification and copper (Cu) exposure on the marine diatom Phaeodactylum tricornutum.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2025
Institute Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany.
Resonant inelastic X-ray scattering (RIXS) is an ideal X-ray spectroscopy method to push the combination of energy and time resolutions to the Fourier transform ultimate limit, because it is unaffected by the core-hole lifetime energy broadening. Also, in pump-probe experiments the interaction time is made very short by the same core-hole lifetime. RIXS is very photon hungry so it takes great advantage from high-repetition-rate pulsed X-ray sources like the European XFEL.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
Paris-Est Creteil University, CNRS, ICMPE, UMR 7182, Thiais, 94320, France.
The design of a new visible-light methacrylated-based kraft lignin photosensitizer (MAcL) of iodonium salt (Iod) for the free-radical polymerization (FRP) of polyethylene glycol dimethacrylate (PEGDMA) under LEDs@405, 455, 470, 505, and 530 nm is reported. As demonstrated by laser flash photolysis (LFP) and electron paramagnetic resonance spin-trapping (EPR ST) experiments, the combination of MAcL with an electron acceptor (Iod) and trimethylolpropane tris(3-mercaptopropionate) (TT) used as a crosslinker, leads to the formation of highly efficient initiating radicals, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!