The slow transport of water, organic species and oxidants in viscous aerosol can lead to aerosol existing in transient states that are not solely governed by thermodynamic principles but by the kinetics of gas-particle partitioning. The relationship between molecular diffusion constants and particle viscosity (for example, as reflected in the Stokes-Einstein equation) is frequently considered to provide an approximate guide to relate the kinetics of aerosol transformation with a material property of the aerosol. We report direct studies of both molecular diffusion and viscosity in the aerosol phase for the ternary system water/maleic acid/sucrose, considering the relationship between the hygroscopic response associated with the change in water partitioning, the volatilisation of maleic acid, the ozonolysis kinetics of maleic acid and the particle viscosity. Although water clearly acts as a plasticiser, the addition of minor fractions of other organic moieties can similarly lead to significant changes in the viscosity from that expected for the dominant component forming the organic matrix (sucrose). Here we highlight that the Stokes-Einstein relationship between the diffusion constant of water and the viscosity of the particle may be more than an order of magnitude in error, even at viscosities as low as 1 Pa s. We show that the thermodynamic relationships of hygroscopic response that underpin such kinetic determinations must be accurately known to retrieve accurate values for diffusion constants; such data are often not available. Further, we show that scaling of the diffusion constants of organic molecules of similar size to those forming the matrix with particle viscosity may be well represented by the Stokes-Einstein equation, suppressing the apparent volatility of semi-volatile components. Finally, the variation in uptake coefficients and diffusion constants for oxidants and small weakly interacting molecules may be much less dependent on viscosity than the diffusion constants of more strongly interacting molecules such as water.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5975831 | PMC |
http://dx.doi.org/10.1039/c5sc03223g | DOI Listing |
J Comput Chem
January 2025
Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile.
The standard Poisson-Boltzmann (PB) model for molecular electrostatics assumes a sharp variation of the permittivity and salt concentration along the solute-solvent interface. The discontinuous field parameters are not only difficult numerically, but also are not a realistic physical picture, as it forces the dielectric constant and ionic strength of bulk in the near-solute region. An alternative to alleviate some of these issues is to represent the molecular surface as a diffuse interface, however, this also presents challenges.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
College of Engineering, Design, and Physical Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
The ability to control and manipulate biological fluids within microchannels is a fundamental challenge in biological diagnosis and pharmaceutical analyses, particularly when buffers with very high ionic strength are used. In this study, we investigate the numerical and experimental study of fluidic biochips driven by ac electrothermal flow for controlling and manipulating biological samples inside a microchannel, e.g.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
Reaction and interaction dynamics of azobenzene-tethered DNA (photoresponsive DNA) with T7 RNA polymerase (T7RNAP) were studied after photoisomerization of azobenzene from the - to -forms using the transient grating (TG) and time-resolved fluorescence polarization techniques. Two types of photoresponsive DNA were examined: AzoPBD, tethered at the protein binding site, and AzoTATA, tethered at the unwinding site. A diffusion change was observed after photoexcitation of -AzoPBD within 1 ms, and this change is explained in terms of a structural change from a bent to an extended conformation upon the -to- photoisomerization.
View Article and Find Full Text PDFChem Sci
January 2025
Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Henan 450001 China
The exceptional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performances of core-shell catalysts are well documented, yet their activity and durability origins have been interpreted only based on the static structures. Herein we employ a NiFe alloy coated with a nitrogen-doped graphene-based carbon shell (NiFe@NC) as a model system to elucidate the active structure and stability mechanism for the ORR and OER by combining constant potential computations, molecular dynamic simulations, and experiments. The results reveal that the synergistic effects between the alloy core and carbon shell facilitate the formation of Fe-N-C active sites and replenish metal sites when central metal atoms detach.
View Article and Find Full Text PDFLangmuir
January 2025
Institute of Concrete Structures and Building Materials, Gotthard-Franz-Str. 3, Karlsruhe 76131, Germany.
This paper investigates the impact of varying humidity conditions on the carbonation depth in hardened cement paste using a 3-dimensional microscale kinetic Monte Carlo (kMC) approach. The kMC algorithm effectively simulates the carbonation process by capturing the interplay between CO diffusion and relative humidity at the microscale, providing insights into macro trends that align with historical models. The study reveals that the maximum carbonation depth is achieved at relative humidity levels between 55 and 65%, where the balance between water and CO diffusion is optimized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!