Movement disorders can be primarily divided into hypokinetic and hyperkinetic. Most of the hypokinetic syndromes are associated with the neurodegenerative disorder Parkinson's disease (PD). By contrast, hyperkinetic syndromes encompass a broader array of diseases, including dystonia, essential tremor, or Huntington's disease. The discovery of effective therapies for these disorders has been challenging and has also involved the development and characterization of accurate animal models for the screening of new drugs. Zebrafish constitutes an alternative vertebrate model for the study of movement disorders. The neuronal circuitries involved in movement in zebrafish are well characterized, and most of the associated molecular mechanisms are highly conserved. Particularly, zebrafish models of PD have contributed to a better understanding of the role of several genes implicated in the disease. Furthermore, zebrafish is a vertebrate model particularly suited for large-scale drug screenings. The relatively small size of zebrafish, optical transparency, and lifecycle, are key characteristics that facilitate the study of multiple compounds at the same time. Several transgenic, knockdown, and mutant zebrafish lines have been generated and characterized. Therefore, it is central to critically analyze these zebrafish lines and understand their suitability as models of movement disorders. Here, we revise the pathogenic mechanisms, phenotypes, and responsiveness to pharmacotherapies of zebrafish lines of the most common movement disorders. A systematic review of the literature was conducted by including all studies reporting the characterization of zebrafish models of the movement disorders selected from five bibliographic databases. A total of 63 studies were analyzed, and the most relevant data within the scope of this review were gathered. The majority (62%) of the studies were focused in the characterization of zebrafish models of PD. Overall, the zebrafish models included display conserved biochemical and neurobehavioral features of the phenomenology in humans. Nevertheless, in light of what is known for all animal models available, the use of zebrafish as a model for drug discovery requires further optimization. Future technological developments alongside with a deeper understanding of the molecular bases of these disorders should enable the development of novel zebrafish lines that can prove useful for drug discovery for movement disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992294 | PMC |
http://dx.doi.org/10.3389/fneur.2018.00347 | DOI Listing |
Genet Med
December 2024
Movement Disorders Program, Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA. Electronic address:
Objectives: Biallelic HPDL variants have been identified as the cause of a progressive childhood-onset movement disorder, with a broad clinical spectrum from severe neurodevelopmental disorder to juvenile-onset pure hereditary spastic paraplegia type 83. This study aims at delineating the geno- and phenotypic spectra of patients with HPDL-related disease, quantitatively modelling the natural history, and uncovering genotype-phenotype associations.
Methods: A cross-sectional analysis of 90 published and one novel case was performed, employing a Human Phenotype Ontology-based approach.
Zh Nevrol Psikhiatr Im S S Korsakova
December 2024
Siberian State Medical University, Tomsk, Russia.
In a number of causes of Parkinson's disease (PD), occupation is periodically mentioned as a possible risk factor. However, a look at the complex impact of external factors on people of certain professions and the expansion of the area of risk factors in a rapidly changing world leads to the emergence of new studies. There is an assumption that the risk of developing PD is increased in doctors due to long-term exposure to stress.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
December 2024
Fakher Mechatronic Research Center, Kerman University of Medical Sciences, Kerman, Iran.
Background: Parkinson's disease (PD) is a neurodegenerative disorder that affects millions of people worldwide. Mobile technologies enable Parkinson's patients to improve their quality of life, manage symptoms, and enhance overall well-being through various applications (apps). There is no integrated list of specific capabilities available to cater to the unique needs of Parkinson's patient-focused mobile apps.
View Article and Find Full Text PDFBMC Psychiatry
December 2024
Department of Clinical, Neuro- and Developmental Psychology, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
Background: There is robust evidence that posttraumatic stress disorder (PTSD) is associated with neurocognitive deficits, such as executive dysfunction or memory dysfunction. Eye Movement Desensitization and Reprocessing (EMDR) is an evidence-based treatment for PTSD, in which eye movements (EMs) are performed during traumatic memory retrieval. We examined whether Eye Movement Desensitization (EMD) improves neurocognitive functioning in PTSD patients, in comparison with a retrieval-only control condition without EMs.
View Article and Find Full Text PDFBMC Anesthesiol
December 2024
Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China.
Objectives: To explore the effect of mild cognitive impairment (MCI) and MCI with sleep disorders on the potency of sevoflurane anesthesia in the elderly.
Design: Prospective study methods. Dixon up-and-down methods.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!