Combining Ultrafast Calorimetry and Electron Microscopy: Reversible Phase Transformations in SeTeAs Alloys.

Cryst Growth Des

Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands.

Published: June 2018

Reversible amorphous-crystalline phase transitions are studied using complementary ultrafast differential scanning calorimetry and transmission electron microscopy techniques, which together allow a wealth of thermal and structural properties to be determined. The SeTe(As) system is investigated because these chalcogenide based materials have favorable properties as a phase-change memory material and in optical systems. Using calorimetry, we find that the addition of 10 at. % As to SeTe alloys strongly increases their glass forming ability, increasing both glass transition and crystallization temperatures while reducing critical quench rate. Ex situ investigation of Se Te As using electron microscopy and elemental mapping reveals a two-phase lamellar segregation mechanism, where a trigonal SeTe-phase and an amorphous As-rich phase are formed. These findings demonstrate the power of combining thermal and structural analysis techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997381PMC
http://dx.doi.org/10.1021/acs.cgd.8b00450DOI Listing

Publication Analysis

Top Keywords

electron microscopy
12
thermal structural
8
combining ultrafast
4
ultrafast calorimetry
4
calorimetry electron
4
microscopy reversible
4
reversible phase
4
phase transformations
4
transformations seteas
4
seteas alloys
4

Similar Publications

In the present study, the effects of glucono-δ-lactone (GDL) as an acid reagent during thermal treatment on the quality of alkaline dough and steamed buns were examined. During the heating process, GDL improved the viscoelasticity and fluidity of the alkaline dough and enhanced intermolecular hydrogen bonding. The hardness of steamed buns was reduced by 61.

View Article and Find Full Text PDF

Structural determinants of oxygen resistance and Zn-mediated stability of the [FeFe]-hydrogenase from .

Proc Natl Acad Sci U S A

January 2025

Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.

[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from has a unique mechanism to protect the H-cluster from oxygen-induced degradation.

View Article and Find Full Text PDF

A divergent two-domain structure of the anti-Müllerian hormone prodomain.

Proc Natl Acad Sci U S A

January 2025

Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267.

TGFβ family ligands are synthesized as precursors consisting of an N-terminal prodomain and C-terminal growth factor (GF) signaling domain. After proteolytic processing, the prodomain typically remains noncovalently associated with the GF, sometimes forming a high-affinity latent procomplex that requires activation. For the TGFβ family ligand anti-Müllerian hormone (AMH), the prodomain maintains a high-affinity interaction with its GF that does not render it latent.

View Article and Find Full Text PDF

Van der Waals electrode integration is a promising strategy to create nearly perfect interfaces between metals and 2D materials, with advantages such as eliminating Fermi-level pinning and reducing contact resistance. However, the lack of a simple, generalizable pick-and-place transfer technology has greatly hampered the wide use of this technique. We demonstrate the pick-and-place transfer of prefabricated electrodes from reusable polished hydrogenated diamond substrates without the use of any sacrificial layers due to the inherent low-energy and dangling-bond-free nature of the hydrogenated diamond surface.

View Article and Find Full Text PDF

Molecular Determinants of Protein Pathogenicity at the Single-Aggregate Level.

Adv Sci (Weinh)

January 2025

Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK.

Determining the structure-function relationships of protein aggregates is a fundamental challenge in biology. These aggregates, whether formed in vitro, within cells, or in living organisms, present significant heterogeneity in their molecular features such as size, structure, and composition, making it difficult to determine how their structure influences their functions. Interpreting how these molecular features translate into functional roles is crucial for understanding cellular homeostasis and the pathogenesis of various debilitating diseases like Alzheimer's and Parkinson's.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!