AI Article Synopsis

Article Abstract

Purpose: The aim of this study is to determine the clinical efficacy of high-flow nasal cannula (HFNC) therapy compared with conventional oxygen therapy in children presented with respiratory distress.

Study Design: This was a randomized controlled study.

Materials And Methods: Infants and children aged between 1 month to 5 years who were admitted to our tertiary referral center for respiratory distress (July 1, 2014 to March 31, 2015) and met the inclusion criteria were recruited.

Interventions: Infants and children hospitalized with respiratory distress were randomized into two groups of interventions. All clinical data, for example, respiratory score, pulse rate, and respiratory rate were recorded. The results were subsequently analyzed.

Results: A total of 98 respiratory distress children were enrolled during the study period. Only 4 children (8.2%) failed in HFNC therapy, compared with 10 children (20.4%) in conventional oxygen therapy group ( = 0.09). After adjusted for body weight, underlying diseases, and respiratory distress score, there was an 85% reduction in the odds of treatment failure in HFNC therapy group (adjusted odds ratio 0.15, 95% confidence interval 0.03-0.66, = 0.01). Most children in HFNC therapy group had significant improvement in clinical respiratory score, heart rate, and respiratory rate at 240, 360, and 120 min compared with conventional oxygen therapy ( = 0.03, 0.04, and 0.03).

Conclusion: HFNC therapy revealed a potential clinical advantage in management children hospitalized with respiratory distress compared with conventional respiratory therapy. The early use of HFNC in children with moderate-to-severe respiratory distress may prevent endotracheal tube intubation.

Trial Register: TCTR 20170222007.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5971639PMC
http://dx.doi.org/10.4103/ijccm.IJCCM_181_17DOI Listing

Publication Analysis

Top Keywords

respiratory distress
28
hfnc therapy
20
conventional oxygen
16
oxygen therapy
16
respiratory
13
compared conventional
12
therapy group
12
therapy
10
children
10
high-flow nasal
8

Similar Publications

Background: Foreign body inhalation is rare in older children, often leading to underdiagnosis and delayed treatment. Most cases involve a single foreign body, but instances of multiple foreign bodies are exceedingly uncommon. This report presents a case of an elder child who inhaled two pen caps, emphasizing the need for clinical vigilance and thorough medical history collection.

View Article and Find Full Text PDF

Objectives: To analyze the clinical and biological characteristics and to evaluate the risk factors associated with the mortality of patients with COVID-19 in Commune IV of the District of Bamako.

Methods: The cohort consisted of COVID-19 patients managed from March 2020 to June 2022 at the Bamako Dermatology Hospital and the Pasteur Polyclinic in Commune IV in Bamako. The studied variables were sociodemographic, clinical, and biological.

View Article and Find Full Text PDF

Biallelic mutations in multiple EGF domain protein 10 (MEGF10) gene cause EMARDD (early myopathy, areflexia, respiratory distress and dysphagia) in humans, a severe recessive myopathy, associated with reduced numbers of PAX7 positive satellite cells. To better understand the role of MEGF10 in satellite cells, we overexpressed human MEGF10 in mouse H-2k-tsA58 myoblasts and found that it inhibited fusion. Addition of purified extracellular domains of human MEGF10, with (ECD) or without (EGF) the N-terminal EMI domain to H-2k-tsA58 myoblasts, showed that the ECD was more effective at reducing myoblast adhesion and fusion by day 7 of differentiation, yet promoted adhesion of myoblasts to non-adhesive surfaces, highlighting the importance of the EMI domain in these behaviours.

View Article and Find Full Text PDF

Animal models that accurately reflect COVID-19 are vital for understanding mechanisms of disease and advancing development of improved vaccines and therapeutics. Pigs are increasingly recognized as valuable models for human disease due to their genetic, anatomical, physiological, and immunological similarities to humans, and they present a more ethically viable alternative to non-human primates. However, pigs are not susceptible to SARS-CoV-2 infection which limits their utility as a model.

View Article and Find Full Text PDF

Extracellular peroxiredoxin 6 released from alveolar epithelial cells as a DAMP drives macrophage activation and inflammatory exacerbation in acute lung injury.

Int Immunopharmacol

January 2025

Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China; Department of Pulmonary Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian 361015, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Respiratory Research Institute, Shanghai 200032, China.

Acute respiratory distress syndrome (ARDS) is featured with acute lung inflammatory injury. Our prospective study found that higher levels of peroxiredoxin 6(PRDX6) were detected in bronchoalveolar lavage (BAL) fluid from ARDS patients. Elevated PRDX6 was also correlated with monocytic activation and poor prognosis in ARDS patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!