The equilibrium mechanical properties of a cross-linked gel of telechelic star polymers are studied by rheology and Brownian dynamics simulations. The Brownian dynamics model consists of cores to which Rouse arms are attached. Forces between the cores are obtained from a potential of mean force model developed by Likos and co-workers. Both experimentally and in the simulations, networks were created by attaching sticker groups to the ends of the arms of the polymers, which were next allowed to form bonds among them in a one to one fashion. Simulations were sped up by solving the Rouse dynamics exactly. Moreover, the Rouse model was extended to allow for different frictions on different beads. In order to describe the rheology of the non-cross-linked polymers, it had to be assumed that bead frictions increase with increasing bead number along the arms. This friction model could be transferred to describe the rheology of the network without any adjustments other than an overall increase of the frictions due to the formation of bonds. The slowing down at intermediate times of the network rheology compared to that of the non-cross-linked polymers is well described by the model. The percentage of stickers involved in forming inter-star bonds in the system was determined to be 25%, both from simulations and from an application of the Green-Tobolsky relation to the experimental plateau value of the shear relaxation modulus. Simulations with increasing cross-link percentages revealed that on approaching the gel transition the shear relaxation modulus develops an algebraic tail, which gets frozen at a percentage of maximum cross-linking of about 11%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997402 | PMC |
http://dx.doi.org/10.1021/acs.macromol.7b02613 | DOI Listing |
Adv Healthc Mater
December 2024
Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
Dynamic covalent cross-linked (DCC) hydrogels represent a significant advance in biomaterials for regenerative medicine and mechanobiology, offering viscoelasticity, and self-healing properties that more closely mimic in vivo tissue mechanics than traditional, predominantly elastic, covalent hydrogels. However, the effects of varying cross-linker architecture on DCC hydrogel viscoelasticity have not been thoroughly investigated. This study introduces hydrazone-based alginate hydrogels to explore how cross-linker architectures impact stiffness and viscoelasticity.
View Article and Find Full Text PDFMacromolecules
February 2024
Institute of Electronic Structure and Laser, FORTH, Heraklion 71110, Crete, Greece.
The design of functional polymeric materials with tunable response requires a synergetic use of macromolecular architecture and interactions. Here, we combine experiments with computer simulations to demonstrate how physical properties of gels can be tailored at the molecular level, using star block copolymers with alternating block sequences as a paradigm. Telechelic star polymers containing attractive outer blocks self-assemble into soft patchy nanoparticles, whereas their mirror-image inverted architecture with inner attractive blocks yields micelles.
View Article and Find Full Text PDFbioRxiv
June 2024
Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
Dynamic covalent crosslinked (DCC) hydrogels represent a significant advance in biomaterials for regenerative medicine and mechanobiology. These gels typically offer viscoelasticity and self-healing properties that more closely mimic tissue mechanics than traditional, predominantly elastic, covalent crosslinked hydrogels. Despite their promise, the effects of varying crosslinker architecture - side chain versus telechelic crosslinks - on the viscoelastic properties of DCC hydrogels have not been thoroughly investigated.
View Article and Find Full Text PDFGels
October 2023
Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan.
Structure and reversibility of cross-link junctions play pivotal roles in determining the nature of thermoreversible gelation and dynamic mechanical properties of the produced polymer networks. We attempt to theoretically explore new types of sol-gel transitions with mechanical sharpness by allowing cross-links to grow without upper bound. We consider thermoreversible gelation of the primary molecules R{Af} carrying the number of low molecular weight functional groups (gelators) A.
View Article and Find Full Text PDFACS Polym Au
October 2023
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.
Chemically crosslinked elastomers are a class of polymeric materials with properties that render them useful as adhesives, sealants, and in other engineering applications. Poly(γ-methyl-ε-caprolactone) (PγMCL) is a hydrolytically degradable and compostable aliphatic polyester that can be biosourced and exhibits competitive mechanical properties to traditional elastomers when chemically crosslinked. A typical limitation of chemically crosslinked elastomers is that they cannot be reprocessed; however, the incorporation of dynamic covalent bonds can allow for bonds to reversibly break and reform under an external stimulus, usually heat.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!