The miR-590/Acvr2a/Terf1 Axis Regulates Telomere Elongation and Pluripotency of Mouse iPSCs.

Stem Cell Reports

Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China. Electronic address:

Published: July 2018

During reprogramming, telomere re-elongation is important for pluripotency acquisition and ensures the high quality of induced pluripotent stem cells (iPSCs), but the regulatory mechanism remains largely unknown. Our study showed that fully reprogrammed mature iPSCs or mouse embryonic stem cells expressed higher levels of miR-590-3p and miR-590-5p than pre-iPSCs. Ectopic expression of either miR-590-3p or miR-590-5p in pre-iPSCs improved telomere elongation and pluripotency. Activin receptor II A (Acvr2a) is the downstream target and mediates the function of miR-590. Downregulation of Acvr2a promoted telomere elongation and pluripotency. Overexpression of miR-590 or inhibition of ACTIVIN signaling increased telomeric repeat binding factor 1 (Terf1) expression. The p-SMAD2 showed increased binding to the Terf1 promoter in pre-iPSCs compared with mature iPSCs. Downregulation of Terf1 blocked miR-590- or shAcvr2a-mediated promotion of telomere elongation and pluripotency in pre-iPSCs. This study elucidated the role of the miR-590/Acvr2a/Terf1 signaling pathway in modulating telomere elongation and pluripotency in pre-iPSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6066996PMC
http://dx.doi.org/10.1016/j.stemcr.2018.05.008DOI Listing

Publication Analysis

Top Keywords

telomere elongation
20
elongation pluripotency
20
stem cells
8
mature ipscs
8
mir-590-3p mir-590-5p
8
mir-590-5p pre-ipscs
8
pluripotency pre-ipscs
8
telomere
6
pluripotency
6
elongation
5

Similar Publications

Oral intake of degalactosylated whey protein increases peripheral blood telomere length in young and aged mice.

Sci Rep

December 2024

Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan.

In order to elucidate novel actions of degalactosylated whey protein (D-WP) in comparison with intact whey protein (WP), the effects of oral intake of D-WP on peripheral blood telomere length and telomerase were examined in young and aged mice. In young mice, peripheral blood telomere length was significantly elongated following oral intake of D-WP for 4 weeks. mRNA expression of both telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC) was significantly increased in the peripheral blood following oral intake of D-WP for 4 weeks.

View Article and Find Full Text PDF

Background: Telomere length has been identified as a marker for biological aging and stressful body states. Mind-body interventions for stress reduction such as meditation, yoga, and pranayama have been previously tested to evaluate their efficacy in restricting telomere shortening.

Primary Study Objective: In this study, the effect of Sudarshan Kriya Yoga (SKY) is investigated for its influence on telomere length.

View Article and Find Full Text PDF

This study explores the reparative effect of Qixiong Zuogui Compound Prescription(QXZG) intervention on the blood-brain barrier(BBB) in the aging brain with middle cerebral artery occlusion(MCAO) in rats mediated by bone marrow stem cells(BMSCs)-derived exosomes, as well as its anti-aging mechanism. An aging MCAO composite model was established using D-galactose-induced aging combined with line embolism. Rats were divided into young sham surgery group, aging sham surgery group, model group, exosome group, and exosome with traditional Chinese medicine(TCM) intervention group.

View Article and Find Full Text PDF

Telomeres are DNA-protein structures that primarily protect chromosomes and serve multiple functions of gene regulation. When cells divide, telomeres shorten and their main repair system in ectotherms - telomerase - replaces lost nucleotide complexes ((T2AG3)n in vertebrates). It remains a challenge to experimentally investigate resource requirements for telomere maintenance and its effects on lifespan-reproductive tradeoffs in the wild.

View Article and Find Full Text PDF

Incidence and severity of prostate cancer (PrCa) substantially varies across ancestries. American men of African ancestry (AA) are more likely to be diagnosed with and die from PrCa than the those of European ancestry (EA). Published polygenic risk scores for developing prostate cancer, even those based on multi-ancestry genome-wide association studies, do not address population-specific genetic mechanisms underlying PrCa risk in men of African ancestry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!