At the heart of programming: the role of micro-RNAs.

J Dev Orig Health Dis

1Woman-Mother-Child-Department,Division of Pediatrics,DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne,Lausanne,Switzerland.

Published: December 2018

Epidemiological and experimental observations tend to prove that environment, lifestyle or nutritional challenges influence heart functions together with genetic factors. Furthermore, when occurring during sensitive windows of heart development, these environmental challenges can induce an 'altered programming' of heart development and shape the future heart disease risk. In the etiology of heart diseases driven by environmental challenges, epigenetics has been highlighted as an underlying mechanism, constituting a bridge between environment and heart health. In particular, micro-RNAs which are involved in each step of heart development and functions seem to play a crucial role in the unfavorable programming of heart diseases. This review describes the latest advances in micro-RNA research in heart diseases driven by early exposure to challenges and discusses the use of micro-RNAs as potential targets in the reversal of the pathophysiology.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S2040174418000387DOI Listing

Publication Analysis

Top Keywords

heart development
12
heart diseases
12
heart
10
environmental challenges
8
diseases driven
8
heart programming
4
programming role
4
role micro-rnas
4
micro-rnas epidemiological
4
epidemiological experimental
4

Similar Publications

Background: Gastrointestinal bleeding (GIB) is a severe and potentially life-threatening complication in patients with acute myocardial infarction (AMI), significantly affecting prognosis during hospitalization. Early identification of high-risk patients is essential to reduce complications, improve outcomes, and guide clinical decision-making.

Objective: This study aimed to develop and validate a machine learning (ML)-based model for predicting in-hospital GIB in patients with AMI, identify key risk factors, and evaluate the clinical applicability of the model for risk stratification and decision support.

View Article and Find Full Text PDF

The ossa cordis (OC), or cardiac bone, is a bony structure within the cardiac skeleton of mammals, believed to maintain heart shape during systole and enhance contraction efficiency. Found in large mammals, especially ruminants, and has recently been described in chimpanzees; however, OC has not previously been described in humans. Herein, we present an incidental finding of OC in the heart of a 39-year-old man who suffered a stab wound to chest.

View Article and Find Full Text PDF

Introduction: Aortic stenosis (AS) and pulmonic stenosis (PS) are two of the most common canine congenital heart diseases (CHD), with a high relative risk for Newfoundland dogs to develop inherited subvalvular AS. For this reason, a cardiovascular screening program has been set up by the French Newfoundland kennel club in order to manage mattings and reduce AS prevalence.

Materials And Methods: The records of untreated and non-anesthetized adult Newfoundland dogs screened between 2010 and 2023 were retrospectively reviewed.

View Article and Find Full Text PDF

Background: Heart muscle damage from myocardial infarction (MI) is brought on by insufficient blood flow. The leading cause of death for middle-aged and older people worldwide is myocardial infarction (MI), which is difficult to diagnose because it has no symptoms. Clinicians must evaluate electrocardiography (ECG) signals to diagnose MI, which is difficult and prone to observer bias.

View Article and Find Full Text PDF

Personalized sports training plans are essential for addressing individual athlete needs, but traditional methods often need to integrate diverse data types, limiting adaptability and effectiveness. Existing machine learning (ML) and rule-based approaches cannot dynamically generate context-specific training programs, reducing their applicability in real-world scenarios. This study aims to develop a Generative Adversarial Network (GAN)- based framework to create context-specific training plans by integrating numeric attributes (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!