Background: We applied augmented reality (AR) techniques to flexible choledochoscopy examinations.

Methods: Enhanced computed tomography data of a patient with intrahepatic and extrahepatic biliary duct dilatation were collected to generate a hollow, 3-dimensional (3D) model of the biliary tree by 3D printing. The 3D printed model was placed in an opaque box. An electromagnetic (EM) sensor was internally installed in the choledochoscope instrument channel for tracking its movements through the passages of the 3D printed model, and an AR navigation platform was built using image overlay display. The porta hepatis was used as the reference marker with rigid image registration. The trajectories of the choledochoscope and the EM sensor were observed and recorded using the operator interface of the choledochoscope.

Results: Training choledochoscopy was performed on the 3D printed model. The choledochoscope was guided into the left and right hepatic ducts, the right anterior hepatic duct, the bile ducts of segment 8, the hepatic duct in subsegment 8, the right posterior hepatic duct, and the left and the right bile ducts of the caudate lobe. Although stability in tracking was less than ideal, the virtual choledochoscope images and EM sensor tracking were effective for navigation.

Conclusions: AR techniques can be used to assist navigation in choledochoscopy examinations in bile duct models. Further research is needed to determine its benefits in clinical settings.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1553350618781622DOI Listing

Publication Analysis

Top Keywords

printed model
12
hepatic duct
12
augmented reality
8
reality techniques
8
bile ducts
8
model
5
duct
5
choledochoscopic examination
4
examination 3-dimensional
4
3-dimensional printing
4

Similar Publications

Small-scale continuum robots hold promise for interventional diagnosis and treatment, yet existing models struggle to achieve small size, precise steering, and visualized functional treatment simultaneously, termed an "impossible trinity". This study introduces an optical fiber-based continuum robot integrated imaging, high-precision motion, and multifunctional operation abilities at submillimeter-scale. With a slim profile of 0.

View Article and Find Full Text PDF

Gastric ulcer (GU) is a common digestive system disease. Acupuncture, as one of the external treatments of traditional Chinese medicine (TCM), has the characteristics of multi-target, multi-pathway and multi-level action in the treatment of GU. The relationship between meridian points and Zang-fu is an important part of the theory of TCM, which is crucial for the diagnosis and treatment of diseases.

View Article and Find Full Text PDF

Stability enhancement of Amphotericin B using 3D printed biomimetic polymeric corneal patch to treat fungal infections.

Int J Pharm

December 2024

Translational Pharmaceutics Research Laboratory (TPRL), Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India. Electronic address:

Amphotericin B eye drops (reconstituted from lyophilized Amphotericin B formulation indicated for intravenous use) is used off-label for fungal keratitis. However, the reconstituted formulation is stable only for a week, even after refrigeration. Moreover, a high dosing frequency makes it an inconvenient treatment practice.

View Article and Find Full Text PDF

Background: To evaluate the feasibility, effectiveness and assistant effect of 3D printed aortic model in the treatment on congenital coarctation of the aorta (CoA) in adolescents and adults.

Methods: From December 2018 to December 2023, a total of 10 patients with congenital coarctation of aorta underwent percutaneous balloon dilatation covered stent implantation in the department of cardiovascular surgery, Xijing Hospital. There were 6 males and 4 females whose average age was (27.

View Article and Find Full Text PDF

Modeling aerosol dynamics in the airways is challenging, and most modern personalized tools consider only a single inhalation maneuver through less than 10% of the total lung volume. Here, we present an modeling pipeline to produce a device that preserves patient-specific upper airways while approximating deeper airways, capable of achieving total lung volumes over 7 liters. The modular system, called TIDAL, includes tunable inhalation and exhalation breathing capabilities with resting flow rates up to 30 liters per minute.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!