Modelling glioma invasion using 3D bioprinting and scaffold-free 3D culture.

J Cell Commun Signal

Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.

Published: December 2018

Glioma is a highly aggressive form of brain cancer, with some subtypes having 5-year survival rates of less than 5%. Tumour cell invasion into the surrounding parenchyma seems to be the primary driver of these poor outcomes, as most gliomas recur within 2 cm of the original surgically-resected tumour. Many current approaches to the development of anticancer therapy attempt to target genetic weaknesses in a particular cancer, but may not take into account the microenvironment experienced by a tumour and the patient-specific genetic differences in susceptibility to treatment. Here we demonstrate the use of complementary approaches, 3D bioprinting and scaffold-free 3D tissue culture, to examine the invasion of glioma cells into neural-like tissue with 3D confocal microscopy. We found that, while both approaches were successful, the use of 3D tissue culture for organoid development offers the advantage of broad accessibility. As a proof-of-concept of our approach, we developed a system in which we could model the invasion of human glioma cells into mouse neural progenitor cell-derived spheroids. We show that we can follow invasion of human tumour cells using cell-tracking dyes and 3D laser scanning confocal microscopy, both in real time and in fixed samples. We validated these results using conventional cryosectioning. Our scaffold-free 3D approach has broad applicability, as we were easily able to examine invasion using different neural progenitor cell lines, thus mimicking differences that might be observed in patient brain tissue. These results, once applied to iPSC-derived cerebral organoids that incorporate the somatic genetic variability of patients, offer the promise of truly personalized treatments for brain cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6235776PMC
http://dx.doi.org/10.1007/s12079-018-0469-zDOI Listing

Publication Analysis

Top Keywords

bioprinting scaffold-free
8
brain cancer
8
tissue culture
8
examine invasion
8
glioma cells
8
confocal microscopy
8
invasion human
8
neural progenitor
8
invasion
6
modelling glioma
4

Similar Publications

Glioblastoma multiforme (GBM) is among the most aggressive brain cancers, and it contains glioma stem cells (GSCs) that drive tumor initiation, progression, and recurrence. These cells resist conventional therapies, contributing to high recurrence rates in GBM patients. Developing in vitro models that mimic the tumor microenvironment (TME), particularly the GSC niche, is crucial for understanding GBM growth and therapeutic resistance.

View Article and Find Full Text PDF

This study explores the bioprinting of a smooth muscle cell-only bioink into ionically crosslinked oxidized methacrylated alginate (OMA) microgel baths to create self-supporting vascular tissues. The impact of OMA microgel support bath methacrylation degree and cell-only bioink dispensing parameters on tissue formation, remodeling, structure and strength was investigated. We hypothesized that reducing dispensing tip diameter from 27 G (210m) to 30 G (159m) for cell-only bioink dispensing would reduce tissue wall thickness and improve the consistency of tissue dimensions while maintaining cell viability.

View Article and Find Full Text PDF

Differentiation of mesenchymal stem cells into vascular endothelial cells in 3D culture: a mini review.

Mol Biol Rep

June 2024

Laboratory of Inorganic Chemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Kampus IPB Dramaga, Bogor, West Java, 16880, Indonesia.

Mesenchymal Stem Cells, mesodermal origin and multipotent stem cells, have ability to differentiate into vascular endothelial cells. The cells are squamous in morphology, inlining, and protecting blood vessel tissue, as well as maintaining homeostatic conditions. ECs are essential in vascularization and blood vessels formation.

View Article and Find Full Text PDF

Enhancing scaffold-free spheroid models: 3D cell bioprinting method for metastatic HSC3-Oral squamous carcinoma cell line.

SLAS Discov

June 2024

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Bahia, Brazil; Department of Propaedeutics, School of Dentistry of the Federal University of Bahia, Salvador 40110-150, Bahia, Brazil; Department of Pathology, School of Medicine of the Federal University of Bahia, Salvador 40110-909, Bahia, Brazil; Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), São Rafael Hospital, Salvador 41253-190, Brazil. Electronic address:

3D in vitro systems offer advantages over the shortcomings of two-dimensional models by simulating the morphological and functional features of in vivo-like environments, such as cell-cell and cell-extracellular matrix interactions, as well as the co-culture of different cell types. Nevertheless, these systems present technical challenges that limit their potential in cancer research requiring cell line- and culture-dependent standardization. This protocol details the use of a magnetic 3D bioprinting method and other associated techniques (cytotoxicity assay and histological analysis) using oral squamous cell carcinoma cell line, HSC3, which offer advantages compared to existing widely used approaches.

View Article and Find Full Text PDF

The current study was a preliminary evaluation of the feasibility and biologic features of three-dimensionally bio-printed tissue-engineered (3D bio-printed) vascular grafts comprising dermal fibroblast spheroids for venous replacement in rats and swine. The scaffold-free tubular tissue was made by the 3D bio-printer with normal human dermal fibroblasts. The tubular tissues were implanted into the infrarenal inferior vena cava of 4 male F344-rnu/rnu athymic nude rats and the short-term patency and histologic features were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!