Contradictory findings on the role of the type 1 cannabinoid receptor (CBR) during the pathogenesis of Alzheimer's disease (AD) have been reported. Here, we evaluated the CBR brain profile in an AD mouse model using longitudinal positron emission tomography with an inverse agonist for CBR, [F]FMPEP-d. APP/PS1-21 and wild-type (n = 8 in each group) mice were repeatedly imaged between 6 to 15 months of age, accompanied by brain autoradiography, western blot, and CBR immunohistochemistry with additional mice. [F]FMPEP-d positron emission tomography demonstrated lower (p < 0.05) binding ratios in the parietotemporal cortex and hippocampus of APP/PS1-21 mice compared with age-matched wild-type mice. Western blot demonstrated no differences between APP/PS1-21 and wild-type mice in the CBR abundance, whereas significantly lower (p < 0.05) receptor expression was observed in male than female mice. The results provide the first demonstration that [F]FMPEP-d is a promising imaging tool for AD research in terms of CBR availability, but not expression. This finding may further facilitate the development of novel therapeutic approaches based on endocannabinoid regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2018.05.013DOI Listing

Publication Analysis

Top Keywords

cannabinoid receptor
8
mouse model
8
alzheimer's disease
8
positron emission
8
emission tomography
8
app/ps1-21 wild-type
8
western blot
8
lower 005
8
wild-type mice
8
cbr
6

Similar Publications

Cannabidiol (CBD) and Δ-tetrahydrocannabinol (THC), the main components of Cannabis sativa plants, can interact with specific cell receptors known as cannabinoid receptors (CBs). The endogenous compounds anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are CB agonists, and, alongside enzymes, they constitute the endocannabinoid system (ECS) and take part in neuromodulation. Several LC-MS/MS methods have been developed to quantify these compounds in biological matrixes, but a fast and simple method that can determine these analytes in plasma samples simultaneously is not available.

View Article and Find Full Text PDF

Electroencephalographic (EEG) recordings in individuals with Fragile X Syndrome (FXS) and the mouse model of FXS ( KO) display cortical hyperexcitability at rest, as well as deficits in sensory-driven cortical network synchrony. A form of circuit hyperexcitability is observed in cortical slices of KO mice as prolonged persistent activity, or Up, states. It is unknown if the circuit mechanisms that cause prolonged Up states contribute to FXS-relevant EEG phenotypes.

View Article and Find Full Text PDF

Objective: Nonproliferative diabetic retinopathy (NPDR) is a progressive disease that can lead to blindness. Current therapies for NPDR are invasive and not extensively used or accessible until the disease progresses, pointing to the need for an early noninvasive treatment. The objective of CANBERRA was to assess the safety, tolerability, and efficacy of oral administration of vicasinabin (RG7774) on the severity of diabetic retinopathy (DR) in participants with moderately severe to severe NPDR and good vision.

View Article and Find Full Text PDF

This narrative review explores the benefits and risks of cannabinoids in kidney health, particularly in individuals with pre-existing renal conditions. It discusses the roles of cannabinoid receptor ligands (phytocannabinoids, synthetic cannabinoids, and endocannabinoids) in kidney physiology. The metabolism and excretion of these substances are also highlighted, with partial elimination occurring via the kidneys.

View Article and Find Full Text PDF

Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders.

Int J Mol Sci

December 2024

Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.

An impact of legalization and decriminalization of marijuana is the gradual increase in the use of cannabis for recreational purposes, which poses a potential threat to society and healthcare systems worldwide. However, the discovery of receptor subtypes, endogenous endocannabinoids, and enzymes involved in synthesis and degradation, as well as pharmacological characterization of receptors, has led to exploration of the use of cannabis in multiple peripheral and central pathological conditions. The role of cannabis in the modulation of crucial events involving perturbed physiological functions and disease progression, including apoptosis, inflammation, oxidative stress, perturbed mitochondrial function, and the impaired immune system, indicates medicinal values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!