Label-free Raman characterization of bacteria calls for standardized procedures.

J Microbiol Methods

CMET, Center for Microbial Technology and Ecology, Department of Biotechnology, Ghent University, Gent, Belgium. Electronic address:

Published: August 2018

Raman spectroscopy has gained relevance in single-cell microbiology for its ability to detect bacterial (sub)populations in a non-destructive and label-free way. However, the Raman spectrum of a bacterium can be heavily affected by abiotic factors, which may influence the interpretation of experimental results. Additionally, there is no publicly available standard for the annotation of metadata describing sample preparation and acquisition of Raman spectra. This article explores the importance of sample manipulations when measuring bacterial subpopulations using Raman spectroscopy. Based on the results of this study and previous findings in literature we propose a Raman metadata standard that incorporates the minimum information that is required to be reported in order to correctly interpret data from Raman spectroscopy experiments. Its aim is twofold: 1) mitigate technical noise due to sample preparation and manipulation and 2) improve reproducibility in Raman spectroscopy experiments studying microbial communities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2018.05.027DOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
16
label-free raman
8
bacterial subpopulations
8
sample preparation
8
spectroscopy experiments
8
raman
7
raman characterization
4
characterization bacteria
4
bacteria calls
4
calls standardized
4

Similar Publications

Designing a 2D van der Waals oxide with lone-pair electrons as chemical scissor.

Natl Sci Rev

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.

Two-dimensional (2D) van der Waals (vdW) materials are known for their intriguing physical properties, but their rational design and synthesis remain a great challenge for chemists. In this work, we successfully synthesized a new non-centrosymmetric oxide, i.e.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) is widely recognized as a powerful analytical technique, offering molecular identification by amplifying characteristic vibrational signals, even at the single-molecule level. While SERS has been successfully applied for a wide range of targets including pesticides, dyes, bacteria, and pharmaceuticals, it has struggled with the detection of molecules with inherently low Raman scattering cross-sections. Urea, a key nitrogen-containing biomolecule and the diamide of carbonic acid, is a prime example of such a challenging target.

View Article and Find Full Text PDF

To fully understand the variation in performance of cyclotrimethylenetrinitramine (RDX) crystals under strong magnetic field exposure, the strong magnetic loading of RDX was conducted in both stable and alternating magnetic fields. The morphological changes of RDX crystals exposed to magnetic fields were studied under a scanning electron microscope. Then, the lattice changes of RDX exposed to magnetic fields were analyzed through X-ray diffraction and Raman spectroscopy.

View Article and Find Full Text PDF

Polymicrobial biofilm infections, especially associated with medical devices such as peripheral venous catheters, are challenging in clinical settings for treatment and management. In this study, we examined the mixed biofilm formed by Candida glabrata and Klebsiella pneumoniae, which were co-isolated from the same peripheral venous catheter. Our results revealed that C.

View Article and Find Full Text PDF

An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes. Localized surface plasmon resonance (LSPR) is a phenomenon in the realm of nanophotonics that occurs when metallic nanoparticles (NPs) or nanostructures interact with incident light. Conversely, surface-enhanced Raman spectroscopy (SERS) is an influential analytical technique based on Raman scattering, wherein it amplifies the Raman signals of molecules when they are situated near specific and specially designed nanostructures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!