Purpose: Wear of polyethylene bearings represents a limiting factor in the long-term success of total elbow prostheses. Bearing stress is 1 factor contributing to accelerated wear. Physiological loading of total elbow prostheses and implant design influence upon bearing stresses have not been well described. This study evaluates bearing stresses in 3 commercially available implant designs under loads associated with daily living.
Methods: Motion tracking from a healthy volunteer helped establish a musculoskeletal model to simulate flexor and extensor muscle activation at 0°, 45°, and 90° of shoulder abduction with a 2.3-kg weight in hand-forces and moments were measured at the elbow. Resulting physiological joint reaction forces and moments were applied to finite element models of 3 total elbow bearing designs (Coonrad/Morrey, Nexel, and Discovery) to evaluate contact area and polyethylene stresses.
Results: Increasing shoulder abduction resulted in minimal changes to the elbow joint reaction force but greater joint moments. All implants showed greater peak stresses with increasing shoulder abduction-elbow varus. Discovery and Nexel achieved greater contact area (23% vs > 100%) and demonstrated up to 39% lower peak polyethylene stresses compared with the Coonrad/Morrey design.
Conclusions: Shoulder abduction results in a varus moment at the elbow. Newer bearing designs (Nexel and Discovery) provide a combination of higher contact area, improved load sharing, reduced edge loading, and lower stresses through elbow range of motion when compared with a cylindrical hinge-bearing design (Coonrad/Morrey).
Clinical Relevance: Although the Coonrad/Morrey is a clinically successful prosthesis, our physiological loading model shows that Discovery and Nexel provide greater contact area, better load sharing and lower peak stresses. This may lead to a decrease in polyethylene wear rates and the eventual risks of osteolysis and aseptic loosening. Further studies are needed to determine how these findings translate clinically.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhsa.2018.04.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!