Elevated indoor radon concentrations (Rn) in dwellings pose generally a potential health risk to the inhabitants. During the last decades a considerable number of studies discussed both the different sources of indoor radon and the drivers for diurnal and multi day variations of its concentration. While the potential sources are undisputed, controversial opinions exist regarding their individual relevance and regarding the driving influences that control varying radon indoor concentrations. These drivers include (i) cyclic forced ventilation of dwellings, (ii) the temporal variance of the radon exhalation from soil and building materials due to e.g. a varying moisture content and (iii) diurnal and multi day temperature and pressure patterns. The presented study discusses the influences of last-mentioned temporal meteorological parameters by effectively excluding the influences of forced ventilation and undefined radon exhalation. The results reveal the continuous variation of the indoor/outdoor pressure gradient as key driver for a constant "breathing" of any interior space, which affects the indoor radon concentration with both diurnal and multi day patterns. The diurnally recurring variation of the pressure gradient is predominantly triggered by the day/night cycle of the indoor temperature that is associated with an expansion/contraction of the indoor air volume. Multi day patterns, on the other hand, are mainly due to periods of negative air pressure indoors that is triggered by periods of elevated wind speeds as a result of Bernoulli's principle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvrad.2018.06.011 | DOI Listing |
Radiat Prot Dosimetry
January 2025
Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada.
This study assesses the activity concentrations of the radionuclides 238U, 232Th, and 40K in soil samples collected from Wolaita Sodo town, located in the Southern Nations, Nationalities, and Peoples' (SNNP) Region, Ethiopia. A gamma-ray spectrometer equipped with a NaI(Tl) detector was used for the measurements. The concentrations of 238U, 232Th, and 40K varied from 3.
View Article and Find Full Text PDFEnviron Int
January 2025
Dipartimento di Geoscienze, Università di Padova, Padova, Italy.
Radon (Rn) is a radioactive gas with well-documented harmful effects; the World Health Organization has confirmed it as a cancerogenic for humans. These detrimental effects have prompted Europe to establish national reference levels to protect the exposed population. This is reflected in European directive 59/2013/EURATOM, which has been transposed into the national regulations of EU Member States.
View Article and Find Full Text PDFAppl Radiat Isot
March 2025
School of Applied Mathematics and Informatics, University of Osijek, Trg Ljudevita Gaja 6, Osijek, Croatia.
The national radon surveys in Montenegro revealed that the highest annual average radon concentrations (C) in ground floors of dwellings and schools were found in a rural region characterized as a typical high-karst area. In this region, spanning approximately 800 km, C values in 9 houses and 16 schools ranged from 219 to 2494 Bq/m, with AM = 977 Bq/m. To investigate the causes of these elevated indoor radon concentrations, the following parameters were measured near the 25 surveyed buildings: soil humidity, electrical conductivity, pH, activity concentrations of Ra, U, U, Th and K, radon concentration in soil gas (c), soil permeability for radon gas (k), and gamma dose rate in the air.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02114.
Radon, a common radioactive indoor air pollutant, is the second leading cause of lung cancer in the United States. Knowledge about its distribution is essential for risk assessment and designing efficient protective regulations. However, the three current radon maps for the United States are unable to provide the up-to-date, high-resolution, and time-varying radon concentrations.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.
Importance: Understanding environmental risk factors for gestational diabetes (GD) is crucial for developing preventive strategies and improving pregnancy outcomes.
Objective: To examine the association of county-level radon exposure with GD risk in pregnant individuals.
Design, Setting, And Participants: This multicenter, population-based cohort study used data from the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) cohort, which recruited nulliparous pregnant participants from 8 US clinical centers between October 2010 and September 2013.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!