The correlations between electroencephalogram frequency components and restoration of stable breathing from respiratory events in sleep apnea hypopnea syndrome.

Respir Physiol Neurobiol

School of Engineering, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Guangzhou, China. Electronic address:

Published: December 2018

The purpose of this study was to explore the ways in which the Electroencephalogram (EEG) and oxygen saturation (SpO) are involved in the progressive respiratory restoration process in patients with sleep apnea hypopnea syndrome (SAHS). Twenty-five SAHS patients were enrolled in the analysis. The respiratory events scored from polysomnography (PSG) recordings were divided into two groups as follows: the events followed by secondary events (SREs), which failed to recover stable breathing and those that spontaneously restored stable ventilation (N-SREs). The trends over the course from consecutive respiratory events (CRE) to stable breathing were also analyzed. Higher spectral powers of the δ, θ, and α bands and smaller sample entropy (SampEn) values in the EEG, along with a smaller SpO drop were observed in N-SREs, compared to those in SREs. It indicated there are correlations between these conditions and the restoration from respiratory events. The δ band power was the most relevant feature. In the CRE restoring process, the δ, θ, and α powers were significantly increased, while SampEn values exhibited the opposite tendency. Our results may reveal the relationship between EEG activity and respiratory rhythm control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resp.2018.06.006DOI Listing

Publication Analysis

Top Keywords

respiratory events
16
stable breathing
12
sleep apnea
8
apnea hypopnea
8
hypopnea syndrome
8
sampen values
8
respiratory
6
events
6
correlations electroencephalogram
4
electroencephalogram frequency
4

Similar Publications

Under the background of climate change, the escalating air pollution and extreme weather events have been identified as risk factors for chronic respiratory diseases (CRD), causing serious public health burden worldwide. This review aims to summarize the effects of changed atmospheric environment caused by climate change on CRD. Results indicated an increased risk of CRD (mainly COPD, asthma) associated with environmental factors, such as air pollutants, adverse meteorological conditions, extreme temperatures, sandstorms, wildfire, and atmospheric allergens.

View Article and Find Full Text PDF

Preexisting multimorbidity predicts greater mortality risks related to long-term PM exposure.

Environ Pollut

January 2025

Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China. Electronic address:

Long-term health risk assessments related to ambient fine particulate matter (PM) exposure have been more limited to general population but not towards individuals suffering from multimorbidity. While both multimorbidity and PM are independently linked to elevated mortality risk, their combined effects and interactions remain practically unexplored. A cross-cohort analysis was undertaken on data from 3 prospective cohorts, initially enrolling 869038 adults aged ≥18 years followed up during 2005-2022.

View Article and Find Full Text PDF

One of the key events in DNA damage response (DDR) is activation of checkpoint kinases leading to activation of ribonucleotide reductase (RNR) and increased synthesis of deoxyribonucleotide triphosphates (dNTPs), required for DNA repair. Among other mechanisms, the activation of dNTP synthesis is driven by derepression of genes encoding RNR subunits RNR2, RNR3, and RNR4, following checkpoint activation and checkpoint kinase Dun1p-mediated phosphorylation and inactivation of transcriptional repressor Crt1p. We report here that in the absence of genotoxic stress during respiratory growth on nonfermentable carbon source acetate, inactivation of checkpoint kinases results in significant growth defect and alters transcriptional regulation of RNR2-4 genes and genes encoding enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles and gluconeogenesis.

View Article and Find Full Text PDF

The atypical proteome of mitochondria from mature pollen grains.

Curr Biol

January 2025

Department of Plant Physiology, UPSC, Umeå University, 90187 Umeå, Sweden. Electronic address:

To propagate their genetic material, flowering plants rely on the production of large amounts of pollen grains that are capable of germinating on a compatible stigma. Pollen germination and pollen tube growth are thought to be extremely energy-demanding processes. This raises the question of whether mitochondria from pollen grains are specifically tuned to support this developmental process.

View Article and Find Full Text PDF

This study was conducted at 112 government and Juntendo University hospitals in February 2021 for the primary series of SARS-CoV-2 vaccinations. We compared the timing of solicited adverse event (AE) onset and prevalence of unsolicited AEs for Pfizer, Moderna, and AstraZeneca vaccines in a nationwide, large-scale prospective cohort study. The Pfizer and Moderna mRNA vaccines were associated with a higher frequency of fever after the second dose than after the first dose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!