We consider condensation in a capillary groove of width L and depth D, formed by walls that are completely wet (contact angle θ=0), which is in a contact with a gas reservoir of the chemical potential μ. On a mesoscopic level, the condensation process can be described in terms of the midpoint height ℓ of a meniscus formed at the liquid-gas interface. For macroscopically deep grooves (D→∞), and in the presence of long-range (dispersion) forces, the condensation corresponds to a second-order phase transition, such that ℓ∼(μ_{cc}-μ)^{-1/4} as μ→μ_{cc}^{-} where μ_{cc} is the chemical potential pertinent to capillary condensation in a slit pore of width L. For finite values of D, the transition becomes rounded and the groove becomes filled with liquid at a chemical potential higher than μ_{cc} with a difference of the order of D^{-3}. For sufficiently deep grooves, the meniscus growth initially follows the power law ℓ∼(μ_{cc}-μ)^{-1/4}, but this behavior eventually crosses over to ℓ∼D-(μ-μ_{cc})^{-1/3} above μ_{cc}, with a gap between the two regimes shown to be δ[over ¯]μ∼D^{-3}. Right at μ=μ_{cc}, when the groove is only partially filled with liquid, the height of the meniscus scales as ℓ^{*}∼(D^{3}L)^{1/4}. Moreover, the chemical potential (or pressure) at which the groove is half-filled with liquid exhibits a nonmonotonic dependence on D with a maximum at D≈3L/2 and coincides with μ_{cc} when L≈D. Finally, we show that condensation in finite grooves can be mapped on the condensation in capillary slits formed by two asymmetric (competing) walls a distance D apart with potential strengths depending on L. All these predictions, based on mesoscopic arguments, are confirmed by fully microscopic Rosenfeld's density functional theory with a reasonable agreement down to surprisingly small values of both L and D.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.97.052804 | DOI Listing |
Mikrochim Acta
January 2025
Institute of Quality Standard and Testing Technology of Beijing Academy of Agriculture and Forestry Sciences, Beijing, 10097, China.
For the first time a novel fluorescent La@ZrMOF nanomaterial was synthesized for the convenient and visual detection of ethephon (ETH) based on the ligand-metal charge transfer process. The fluorescence signal gradually enhanced as the concentration of ETH increased, accompanied by a change in the color from colorless to blue. The assay can be completed within 75 min with a detection limit of 0.
View Article and Find Full Text PDFNano Lett
January 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
Developing sustainable structural materials to replace traditional carbon-intensive structural materials fundamentally reshapes the concept of circular development. Herein, we propose an interface engineering strategy that utilizes water as a liquid medium to replace the residual air within natural wood. This approach minimizes the absorption of water-based softening agents by microcapillary channels of wood, enabling the controlled softening of the cell walls.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
Ocular surface chemical injuries often result in permanent visual impairment and necessitate complex, long-term treatments. Immediate and extensive irrigation serves as the first-line intervention, followed by various therapeutic protocols applied throughout different stages of the condition. To optimize outcomes, conventional regimens increasingly incorporate biological agents and surgical techniques.
View Article and Find Full Text PDFArch Toxicol
January 2025
Cosmetics Europe, Brussels, Belgium.
Grouping of chemicals has been proposed as a strategy to speed up the screening and identification of potential substances of concern among the broad chemical universe under REACH. Such grouping is usually based on shared structural features and should only be used for the prioritization objectives. However, additional considerations (as well as structural similarity) are needed, e.
View Article and Find Full Text PDFSci Rep
January 2025
Foot and Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!