Nonlinear oscillatory mixing in the generalized Landau scenario.

Phys Rev E

Departament de Física, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.

Published: May 2018

We present a set of phase-space portraits illustrating the extraordinary oscillatory possibilities of the dynamical systems through the so-called generalized Landau scenario. In its simplest form the scenario develops in N dimensions around a saddle-node pair of fixed points experiencing successive Hopf bifurcations up to exhausting their stable manifolds and generating N-1 different limit cycles. The oscillation modes associated with these cycles extend over a wide phase-space region by mixing ones within the others and by affecting both the transient trajectories and the periodic orbits themselves. A mathematical theory covering the mode-mixing mechanisms is lacking, and our aim is to provide an overview of their main qualitative features in order to stimulate research on it.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.97.052218DOI Listing

Publication Analysis

Top Keywords

generalized landau
8
landau scenario
8
nonlinear oscillatory
4
oscillatory mixing
4
mixing generalized
4
scenario set
4
set phase-space
4
phase-space portraits
4
portraits illustrating
4
illustrating extraordinary
4

Similar Publications

Dendritic cell (DC) activation by pattern recognition receptors like Toll-like-receptors (TLRs) is crucial for cancer immunotherapies. Here, we demonstrate the effectiveness of the TLR7/8 agonist imiquimod (IMQ) in treating both local tumors and distant metastases. Administered orally, IMQ activates plasmacytoid DCs (pDCs) to produce systemic type I interferons (IFN-I) required for TLR7/8 upregulation in DCs and macrophages, sensitizing them to topical IMQ treatment, which is essential for therapeutic efficacy.

View Article and Find Full Text PDF

Linking Research Data with Physically Preserved Research Materials in Chemistry.

Sci Data

January 2025

Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany.

Results of scientific work in chemistry can usually be obtained in the form of materials and data. A big step towards transparency and reproducibility of the scientific work can be gained if scientists publish their data in research data repositories in a FAIR manner. Nevertheless, in order to make chemistry a sustainable discipline, obtaining FAIR data is insufficient and a comprehensive concept that includes preservation of materials is needed.

View Article and Find Full Text PDF

Depressive Symptoms and Amyloid Pathology.

JAMA Psychiatry

January 2025

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.

Importance: Depressive symptoms are associated with cognitive decline in older individuals. Uncertainty about underlying mechanisms hampers diagnostic and therapeutic efforts. This large-scale study aimed to elucidate the association between depressive symptoms and amyloid pathology.

View Article and Find Full Text PDF

Engineering Floquet Moiré Patterns for Scalable Photocurrents.

Nano Lett

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), X5000HUA Córdoba, Argentina.

While intense laser irradiation and moiré engineering have independently proven powerful for tuning material properties on demand in condensed matter physics, their combination remains unexplored. Here we exploit tilted laser illumination to create spatially modulated light-matter interactions, leading to two striking phenomena in graphene. First, using two lasers tilted along the same axis, we create a quasi-1D supercell hosting a network of Floquet topological states that generate controllable and scalable photocurrents spanning the entire irradiated region.

View Article and Find Full Text PDF

While there is strong evidence that younger adults use contextual information to generate semantic predictions, findings from older adults are less clear. Age affects cognition in a variety of different ways that may impact prediction mechanisms; while the efficiency of memory systems and processing speed decrease, life experience leads to complementary increases in vocabulary size, real-world knowledge, and even inhibitory control. Using the visual world paradigm, we tested prediction in younger ( = 30, between 18 and 35 years of age) and older adults ( = 30, between 53 and 78 years of age).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!