Measurement of the lifetime of attachments formed by a single microtubule (MT) with a single kinetochore (kt) in vitro under force-clamp conditions had earlier revealed a catch-bond-like behavior. In the past, the physical origin of this apparently counterintuitive phenomenon was traced to the nature of the force dependence of the (de)polymerization kinetics of the MTs. Here, first the same model MT-kt attachment is subjected to external tension that increases linearly with time until rupture occurs. In our force-ramp experiments in silico, the model displays the well known "mechanical signatures" of a catch bond probed by molecular force spectroscopy. Exploiting this evidence, we have further strengthened the analogy between MT-kt attachments and common ligand-receptor bonds in spite of the crucial differences in their underlying physical mechanisms. We then extend the formalism to model the stochastic kinetics of an attachment formed by a bundle of multiple parallel microtubules with a single kt considering the effect of rebinding under force-clamp and force-ramp conditions. From numerical studies of the model we predict the trends of variation of the mean lifetime and mean rupture force with the increasing number of MTs in the bundle. Both the mean lifetime and the mean rupture force display nontrivial nonlinear dependence on the maximum number of MTs that can attach simultaneously to the same kt.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.97.052414DOI Listing

Publication Analysis

Top Keywords

molecular force
8
force spectroscopy
8
catch bond
8
lifetime rupture
8
rupture force
8
number mts
8
spectroscopy kinetochore-microtubule
4
kinetochore-microtubule attachment
4
attachment silico
4
silico mechanical
4

Similar Publications

Implementation of Time-Averaged Restraints with UNRES Coarse-Grained Model of Polypeptide Chains.

J Chem Theory Comput

January 2025

Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.

Time-averaged restraints from nuclear magnetic resonance (NMR) measurements have been implemented in the UNRES coarse-grained model of polypeptide chains in order to develop a tool for data-assisted modeling of the conformational ensembles of multistate proteins, intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs), many of which are essential in cell biology. A numerically stable variant of molecular dynamics with time-averaged restraints has been introduced, in which the total energy is conserved in sections of a trajectory in microcanonical runs, the bath temperature is maintained in canonical runs, and the time-average-restraint-force components are scaled up with the length of the memory window so that the restraints affect the simulated structures. The new approach restores the conformational ensembles used to generate ensemble-averaged distances, as demonstrated with synthetic restraints.

View Article and Find Full Text PDF

Background: Protein-truncating mutations in the titin gene are associated with increased risk of atrial fibrillation. However, little is known about the underlying pathophysiology.

Methods: We identified a heterozygous titin truncating variant (TTNtv) in a patient with unexplained early onset atrial fibrillation and normal ventricular function.

View Article and Find Full Text PDF

Two previously undescribed triterpenoid saponins from the roots and rhizomes of Maxim.

Front Chem

January 2025

Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, China.

Since ancient times, plants have provided humans with important bioactive compounds for the treatment of various diseases. Nine compounds were isolated from the roots and rhizomes of Caulophyllum robustum (a plant in the family Panaxaceae), including two new saponins C. Spanion A and C.

View Article and Find Full Text PDF

Weak Covalent Bonds and Mechanochemistry for Synergistic Self-Strengthening of Elastomers.

J Am Chem Soc

January 2025

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, West Campus, 2# Linggong Road, Dalian 116024, China.

The macroscopic properties of elastomers are intimately linked to their molecular reactivity and mechanisms. Here, we propose a new strategy for designing strengthening materials based on the synergy of weak covalent bonds and mechanochemistry. After mechanical treatment, the failure strength and toughness of the elastomer increased from 2.

View Article and Find Full Text PDF

Ergothioneine exerts neuroprotective effects in Parkinson's disease: Targeting α-synuclein aggregation and oxidative stress.

Food Res Int

February 2025

Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Ergothioneine (EGT) is a natural dietary antioxidant derived from certain edible mushrooms, commonly used as a food additive and supplement, but its effects on Parkinson's Disease (PD) are still unclear. The accumulation of α-synuclein (α-syn) plays a pivotal role in the pathogenesis and development of PD. Here, this study demonstrated that EGT effectively inhibits α-syn aggregation, disrupts mature fibers, and reduces associated cytotoxicity and oxidative stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!