Background: Treatment of patients with cat allergy with peptides derived from Fel d 1 (the major cat allergen) ameliorated symptoms of cat allergy in phase 2 clinical trials.
Objective: We sought to demonstrate that the tolerance induced by Fel d 1 peptide immunotherapy can be exploited to reduce allergic responses to a second allergen, ovalbumin (OVA), in mice sensitized dually to OVA and Fel d 1.
Methods: Induction of tolerance to OVA was achieved through simultaneous exposure to both allergens after peptide treatment. Functional tolerance to each allergen was assessed in a model of allergic airways disease in which treated mice were protected from eosinophilia, goblet cell hyperplasia, and T2 cell infiltration.
Results: Suppression of allergic responses to cat allergen challenge was associated with significant increases in numbers of CD4CD25Foxp3 T cells, IL-10 cells, and CD19IL-10 B cells, whereas the response to OVA was associated with a marked reduction in numbers of T2 cytokine-secreting T cells and less prominent changes in outcomes associated with immune regulation.
Conclusions: These observations suggest that immune tolerance induced by peptide immunotherapy can be used experimentally to treat an allergic response to another allergen and that the molecular mechanisms underlying induction of tolerance to a treatment-specific allergen and a bystander allergen might be different.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jaci.2018.03.023 | DOI Listing |
J Immunother Cancer
January 2025
Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
Background: Cancer immunotherapy using immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, patients with multiple myeloma (MM) rarely respond to ICB. Accumulating evidence indicates that the complicated tumor microenvironment (TME) significantly impacts the efficacy of ICB therapy.
View Article and Find Full Text PDFTrends Pharmacol Sci
January 2025
Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA. Electronic address:
Chimeric antigen receptor (CAR)-T cell therapy has transformed the treatment landscape for hematological cancers. However, achieving comparable success in solid tumors remains challenging. Factors contributing to these limitations include the scarcity of tumor-specific antigens (TSAs), insufficient CAR-T cell infiltration, and the immunosuppressive tumor microenvironment (TME).
View Article and Find Full Text PDFACS Nano
January 2025
Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China.
The concept of immunogenic cell death (ICD) induced by chemotherapy as a potential synergistic modality for cancer immunotherapy has been widely discussed. Unfortunately, most chemotherapeutic agents failed to dictate effective ICD responses due to their defects in inducing potent ICD signaling. Here, we report a dual-enzyme-instructed peptide self-assembly platform of (CPT-GFFpY-PLGVRK-Caps) that cooperatively utilizes camptothecin (CPT) and capsaicin (Caps) to promote ICD and engage systemic adaptive immunity for tumor rejection.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK.
Hypoxia is a common feature of solid tumors that has previously been linked to resistance to radiotherapy and chemotherapy, and more recently to immunotherapy. In particular, hypoxic tumors exclude T cells and inhibit their activity, suggesting that tumor cells acquire a mechanism to evade T-cell recognition and killing. Our analysis of hypoxic tumors indicates that hypoxia downregulates the expression of MHC class I and its bound peptides (i.
View Article and Find Full Text PDFImmunol Rev
January 2025
Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK.
HLA-E is a nonclassical, nonpolymorphic, class Ib HLA molecule. Its primary function is to present a conserved nonamer peptide, termed VL9, derived from the signal sequence of classical MHC molecules to the NKG2x-CD94 receptors on NK cells and a subset of T lymphocytes. These receptors regulate the function of NK cells, and the importance of this role, which is conserved across mammalian species, probably accounts for the lack of genetic polymorphism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!