Dermal Fibroblast SLC3A2 Deficiency Leads to Premature Aging and Loss of Epithelial Homeostasis.

J Invest Dermatol

Institut de Recherche sur le Cancer et le Vieillissement, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Université Cote d'Azur, Nice, France. Electronic address:

Published: December 2018

Skin homeostasis relies on fine-tuning of epidermis-dermis interactions and is affected by aging. While extracellular matrix (ECM) proteins, such as integrins, are involved in aging, the molecular basis of the skin changes needs to be investigated further. Here, we showed that integrin co-receptor, SLC3A2, required for cell proliferation, is expressed at the surface of resting dermal fibroblasts in young patients and is reduced drastically with aging. In vivo SLC3A2 dermal fibroblast deletion induced major skin phenotypes resembling premature aging. Knockout mice (3 months old) presented strong defects in skin elasticity due to altered ECM assembly, which impairs epidermal homeostasis. SLC3A2 dermal fibroblast loss led to an age-associated secretome profile, with 77% of identified proteins belonging to ECM and ECM-associated proteins. ECM not only contributes to skin mechanical properties, but it is also a reservoir of growth factors and bioactive molecules. We demonstrate that dermal fibroblast SLC3A2 is required for ECM to fully exert its structural and reservoir role allowing proper and efficient TGF-β localization and activation. We identified SLC3A2 as a protective controller of dermal ECM stiffness and quality required to maintain the epidermis to dermis interface as functional and dynamic.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jid.2018.05.026DOI Listing

Publication Analysis

Top Keywords

dermal fibroblast
16
fibroblast slc3a2
8
premature aging
8
slc3a2 required
8
slc3a2 dermal
8
dermal
6
slc3a2
6
ecm
6
aging
5
skin
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!