A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

O-Glycosylation-mediated signaling circuit drives metastatic castration-resistant prostate cancer. | LitMetric

Disseminated castration-resistant prostate cancer (CRPC) is a common disease in men that is characterized by limited survival and resistance to androgen-deprivation therapy. The increase in human epidermal growth factor receptor 2 (HER2) signaling contributes to androgen receptor activity in a subset of patients with CRPC; however, enigmatically, HER2-targeted therapies have demonstrated a lack of efficacy in patients with CRPC. Aberrant glycosylation is a hallmark of cancer and involves key processes that support cancer progression. Using transcriptomic analysis of prostate cancer data sets, histopathologic examination of clinical specimens, and in vivo experiments of xenograft models, we reveal in this study a coordinated increase in glycan-binding protein, galectin-4, specific glycosyltransferases of core 1 synthase, glycoprotein- N-acetylgalactosamine 3-β-galactosyltransferase 1 (C1GALT1) and ST3 beta-galactoside α-2,3-sialyltransferase 1 (ST3GAL1), and resulting mucin-type O-glycans during the progression of CRPC. Furthermore, galectin-4 engaged with C1GALT1-dependent O-glycans to promote castration resistance and metastasis by activating receptor tyrosine kinase signaling and cancer cell stemness properties mediated by SRY-box 9 (SOX9). This galectin-glycan interaction up-regulated the MYC-dependent expression of C1GALT1 and ST3GAL1, which altered cellular mucin-type O-glycosylation to allow for galectin-4 binding. In clinical prostate cancer, high-level expression of C1GALT1 and galectin-4 together predict poor overall survival compared with low-level expression of C1GALT1 and galectin-4. In summary, MYC regulates abnormal O-glycosylation, thus priming cells for binding to galectin-4 and downstream signaling, which promotes castration resistance and metastasis.-Tzeng, S.-F., Tsai, C.-H., Chao, T.-K., Chou, Y.-C., Yang, Y.-C., Tsai, M.-H., Cha, T.-L., Hsiao, P.-W. O-Glycosylation-mediated signaling circuit drives metastatic castration-resistant prostate cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201800687DOI Listing

Publication Analysis

Top Keywords

prostate cancer
20
castration-resistant prostate
12
expression c1galt1
12
o-glycosylation-mediated signaling
8
signaling circuit
8
circuit drives
8
drives metastatic
8
metastatic castration-resistant
8
cancer
8
patients crpc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!