Role of endothelial microRNA-23 clusters in angiogenesis in vivo.

Am J Physiol Heart Circ Physiol

Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo , Japan.

Published: October 2018

The capillary network is distributed throughout the body, and its reconstruction is induced under various pathophysiological conditions. MicroRNAs are small noncoding RNAs that regulate gene expression via posttranscriptional mechanisms and are involved in many biological functions, including angiogenesis. Previous studies have shown that each microRNA of miR-23 clusters, composed of the miR-23a cluster (miR-23a~27a~24-2) and miR-23b cluster (miR-23b~27b~24-1), regulates angiogenesis in vitro. However, the role of miR-23 clusters, located within a single transcription unit, in angiogenesis in vivo has not been elucidated. In the present study, we generated vascular endothelial cell (EC)-specific miR-23 cluster double-knockout (DKO) mice and demonstrated sprouting angiogenesis under various conditions, including voluntary running exercise, hindlimb ischemia, skin wound healing, and EC sprouting from aorta explants. Here, we demonstrated that EC-specific miR-23 DKO mice are viable and fertile, with no gross abnormalities observed in pups or adults. The capillary number was normally increased in the muscles of these DKO mice in response to 2 wk of voluntary running and hindlimb ischemia. Furthermore, we did not observe any abnormalities in skin wound closure or EC sprouting from aortic ring explants in EC-specific miR-23 cluster DKO mice. Our results suggest that endothelial miR-23 clusters are dispensable for embryonic development and postnatal angiogenesis in vivo. NEW & NOTEWORTHY We generated vascular endothelial cell (EC)-specific miR-23a/b cluster double-knockout mice and determined sprouting angiogenesis under various conditions, including voluntary running exercise, hindlimb ischemia, skin wound healing, and EC sprouting from aorta explants. We demonstrated that the double-knockout mice were viable and fertile, with no gross abnormalities in exercise- and ischemia-induced angiogenesis and skin wound closure or EC sprouting from aortic ring explants.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00742.2017DOI Listing

Publication Analysis

Top Keywords

dko mice
16
skin wound
16
angiogenesis vivo
12
mir-23 clusters
12
ec-specific mir-23
12
voluntary running
12
hindlimb ischemia
12
angiogenesis
8
generated vascular
8
vascular endothelial
8

Similar Publications

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Endosomal nucleic acid sensing by Toll-like receptors (TLRs) is central to antimicrobial immunity and several autoimmune conditions such as systemic lupus erythematosus (SLE). The innate immune adaptor TASL mediates, via the interaction with SLC15A4, the activation of IRF5 downstream of human TLR7, TLR8 and TLR9, but the pathophysiological functions of this axis remain unexplored. Here we show that SLC15A4 deficiency results in a selective block of TLR7/9-induced IRF5 activation, while loss of TASL leads to a strong but incomplete impairment, which depends on the cell type and TLR engaged.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a severe genetic muscle disease occurring due to mutations of the dystrophin gene. There is no cure for DMD. Using a dystrophinutrophin (DKO-Hom) mouse model, we investigated the PGE2/EP2 pathway in the pathogenesis of dystrophic muscle and its potential as a therapeutic target.

View Article and Find Full Text PDF

Background: The most common cause of death in those with cystic fibrosis (CF) is respiratory failure due to bronchiectasis resulting from repeated cycles of respiratory infection and inflammation. Protease-activated receptor 1 (PAR1) is a cell surface receptor activated by serine proteases including neutrophil elastase, which is recognised as a potent modulator of inflammation. While PAR1 is known to play an important role in regulating inflammation, nothing is known about any potential role of this receptor in CF pathogenesis.

View Article and Find Full Text PDF

LGR4 is essential for maintaining β-cell homeostasis through suppression of RANK.

Mol Metab

January 2025

Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA. Electronic address:

Objective: Loss of functional β-cell mass is a major cause of diabetes. Thus, identifying regulators of β-cell health is crucial for treating this disease. The Leucine-rich repeat-containing G-protein-coupled receptor (GPCR) 4 (LGR4) is expressed in β-cells and is the fourth most abundant GPCR in human islets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!