The synthesis of refractory materials usually relies on high-temperature conditions to drive diffusion-limited solid-state reactions. These reactions result in thermodynamically stable products that are rarely amenable to low-temperature topochemical transformations that postsynthetically modify subtle structural features. Here, we show that topochemical deintercalation of Al from MoAlB single crystals, achieved by room-temperature reaction with NaOH, occurs in a stepwise manner to produce several metastable Mo-Al-B intergrowth phases and a two-dimensional MoB (MBene) monolayer, which is a boride analogue to graphene-like MXene carbides and nitrides. A high-resolution microscopic investigation reveals that stacking faults form in MoAlB as Al is deintercalated and that the stacking fault density increases as more Al is removed. Within nanoscale regions containing high densities of stacking faults, four previously unreported Mo-Al-B (MAB) intergrowth phases were identified, including MoAlB, MoAlB, MoAlB, and MoAlB. One of these deintercalation products, MoAlB, is identified as the likely MAB-phase precursor that is needed to achieve a high-yield synthesis of two-dimensional MoB, a highly targeted two-dimensional MBene. Microscopic evidence of an isolated MoB monolayer is shown, demonstrating the feasibility of using room-temperature metastable-phase engineering and deintercalation to access two-dimensional MBenes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b04705DOI Listing

Publication Analysis

Top Keywords

moalb moalb
12
topochemical deintercalation
8
moalb
8
deintercalation moalb
8
two-dimensional mbene
8
intergrowth phases
8
two-dimensional mob
8
stacking faults
8
two-dimensional
5
moalb stepwise
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!