Myelodysplastic syndromes (MDS) encompass a heterogeneous group of clonal hematopoietic stem cell disorders characterized by a broad clinical spectrum related to ineffective hematopoiesis leading to unilineage or multilineage cytopenias, with a high propensity for transformation to acute myeloid leukemia. Iron overload has been recently identified as one of the important conditions complicating the management of these diverse disorders. The accumulation of iron is mainly related to chronic transfusions; however, evidence suggests a possible role for ineffective erythropoiesis and increased intestinal absorption of iron, related to altered hepcidin and growth differentiation factor-15 levels in the development of hemosiderosis in patients with MDS. In addition to its suggested role in the exacerbation of ineffective erythropoiesis, multiple reports have identified a prognostic implication for the development of iron overload in patients with MDS, with an improvement in overall survival after the initiation of iron chelation therapy. This review includes a detailed discussion of iron overload in patients with MDS whether they are undergoing supportive therapy or curative hematopoietic stem cell transplantation, with a focus on the mechanism, diagnosis, and effect on survival as well as the optimal management of this highly variable complication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cncr.31550 | DOI Listing |
J Magn Reson Imaging
January 2025
Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
While current guidelines recommend R2* method as the first-line method for liver iron concentration (LIC) measurement, its diagnostic accuracy is debatable. A prior meta-analysis suggested limited accuracy of R2* method for identifying patients with iron overload. However, substantial advances in R2* method over the past decade may have improved its diagnostic performance.
View Article and Find Full Text PDFZhejiang Da Xue Xue Bao Yi Xue Ban
December 2024
Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
Comb Chem High Throughput Screen
January 2025
Department of Cardiology, Tianjin First Center Hospital, Tianjin, China.
Background: Maslinic acid (MA), a pentacyclic triterpenoid compound derived from leaves and fruits of Olea europaea, bears multi-pharmacological properties. Our previous studies found that MA exerted a cardioprotective effect by modulating oxidative stress, inflammation, and apoptosis during myocardial ischemia-reperfusion injury (MIRI). Nevertheless, data regarding the anti-ferroptosis effects of MA on MI/RI remains unidentified.
View Article and Find Full Text PDFJ Adv Res
January 2025
Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong 253032, China. Electronic address:
Background: The modification of endothelial cells (ECs) biological function under pathogenic conditions leads to the expression of mesenchymal stromal cells (MSCs) markers, defined as endothelial-to-mesenchymal transition (EndMT). Invisible in onset and slow in progression, atherosclerosis (AS) is a potential contributor to various atherosclerotic cardiovascular diseases (ASCVD). By triggering AS, EndMT, the "initiator" of AS, induces the progression of ASCVD such as coronary atherosclerotic heart disease (CHD) and ischemic cerebrovascular disease (ICD), with serious clinical complications such as myocardial infarction (MI) and stroke.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China. Electronic address:
Intravascular hemolysis releases hemoglobin (Hb) from red blood cells under specific conditions, yet the effect of hemolysis in aquaculture systems remain poorly understood. In this study, a continuous hemolysis model for grass carp was established by injection of phenylhydrazine (PHZ) to investigate the mechanistic impacts of sustained hemolysis. PHZ-induced hemolysis altered liver color, and subsequent hematoxylin and eosin staining revealed substantial Hb accumulation in the head kidney, accompanied by inflammatory cell infiltration and vacuolization in liver tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!