To accelerate the development of novel vaccines for schistosomiasis, we set out to develop a human model for Schistosoma mansoni infection in healthy volunteers. During natural infections, female schistosomes produce eggs that give rise to morbidity. Therefore, we produced single-sex, male Schistosoma mansoni cercariae for human infection without egg production and associated pathology. Cercariae were produced in their intermediate snail hosts in accordance with the principles of good manufacturing practice (GMP). The application of GMP principles to an unconventional production process is a showcase for the controlled production of complex live challenge material in the European Union or under Food and Drug Administration guidance.

Download full-text PDF

Source
http://dx.doi.org/10.1093/infdis/jiy275DOI Listing

Publication Analysis

Top Keywords

schistosoma mansoni
12
male schistosoma
8
mansoni cercariae
8
human infection
8
establishing production
4
production male
4
cercariae controlled
4
controlled human
4
infection model
4
model accelerate
4

Similar Publications

Purpose: Schistosomiasis remains a parasitic disease affecting millions of people worldwide, requiring interventions like vaccination. In previous work, our group used reverse vaccinology to identify two epitopes from the Schistosoma mansoni proteins, Sm050890 (44-58) and Sm141290 (225-239). This study evaluated the immune response profile and protection induced by peptides, as a mixture of immunogens, in murine vaccination trials.

View Article and Find Full Text PDF

Development and Application of an In Vitro Drug Screening Assay for Schistosomula Using YOLOv5.

Biomedicines

December 2024

Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca, Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain.

Background: Schistosomiasis impacts over 230 million people globally, with 251.4 million needing treatment. The disease causes intestinal and urinary symptoms, such as hepatic fibrosis, hepatomegaly, splenomegaly, and bladder calcifications.

View Article and Find Full Text PDF

Genomic basis of schistosome resistance in a molluscan vector of human schistosomiasis.

iScience

January 2025

Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA 92697, USA.

Freshwater snails are obligate intermediate hosts for the transmission of schistosomiasis, one of the world's most devastating parasitic diseases. To decipher the mechanisms underlying snail resistance to schistosomes, recombinant inbred lines (RILs) were developed from two well-defined homozygous lines (iM line and iBS90) of the snail . Whole-genome sequencing (WGS) was used to scan the genomes of 46 individual RIL snails, representing 46 RILs, half of which were resistant or susceptible to .

View Article and Find Full Text PDF

With praziquantel being the sole available drug for schistosomiasis, identifying novel anthelmintic agents is imperative. A chemical investigation of the fruiting body of the bioluminescent mushroom Berk. resulted in the isolation of new conjugated long-chain fatty acids (8,10,12,13)-12,13-dihydroxy-7-oxo-octadeca-8,10-dienoic acid () and (7,8,9,11)-7,8-dihydroxy-13-oxo-octadeca-9,11-dienoic acid () and three previously described compounds, (7,8,9)-7,8-dihydroxyoctadec-9-enoic acid (), (2)-dec-2-ene-1,10-dioic acid (), and a ketolactone marasmeno-1,15-dione ().

View Article and Find Full Text PDF

Lake Victoria is a well-known hot spot for intestinal schistosomiasis, caused by infection with the trematode Schistosoma mansoni. The snail intermediate hosts of this parasite are Biomphalaria snails, with Biomphalaria choanomphala being the predominant intermediate host within Lake Victoria. The prevalence of S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!