A setup for time-resolved photoluminescence spectroscopy, based on parametric three-wave mixing in a periodically poled lithium niobate crystal, is characterized. Special attention is given to adjusting the phase matching condition by angle tuning of the luminescent light relative to a strong, continuous-wave laser beam within the crystal. The detection system is capable of operating at room temperature and in a wavelength range from 1.55 to 2.20 µm. Its sensitivity is compared to a commercial photomultiplier, and its capability of nanosecond time resolution is demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.43.003001 | DOI Listing |
Luminescence
January 2025
Department of Display Science and Engineering, Pukyong National University, Busan, Republic of Korea.
The influence of Eu concentration on the crystal structure and photoluminescence (PL) properties of Ca(PO):xEu (0.06 ≤ x ≤ 0.10) phosphors is systematically investigated using X-ray diffraction (XRD) Rietveld refinement, scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, UV-visible spectroscopy, and PL spectroscopy.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington 6012, New Zealand.
We demonstrate a high-performance ultrafast broadband time-resolved photoluminescence (TRPL) system based on the transient grating photoluminescence spectroscopy (TGPLS) technique. The core of the system is a Kerr effect-induced transient grating (TG) optical gate driven by high repetition rate ultrashort laser pulses at 1030 nm with micro-Joule pulse energy. Satisfying the demands of spectroscopy applications, the setup achieves high sensitivity, rapid data acquisition, ultrafast time resolution, and a wide spectral window from ultraviolet to near-infrared.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics, State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, CHINA.
Broad-temperature optical thermometry necessitates materials with exceptional sensitivity and stability across varied thermal conditions, presenting challenges for conventional systems. Here, we report a lead-free, vacancy-ordered perovskite Cs2TeCl6, that achieves precise temperature sensing through a novel combination of self-trapped excitons (STEs) photoluminescence (PL) lifetime modulation and unprecedented fifth-order phonon anharmonicity. The STEs PL lifetime demonstrates a highly temperature-sensitive response from 200 to 300 K, ideal for low-to-intermediate thermal sensing.
View Article and Find Full Text PDFLangmuir
January 2025
School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
Herein, first, MIL-125 samples were synthesized via a hydrothermal method. Then, Ag species were doping on the surface of MIL-125 samples via the photolysis of silver nitrate. Finally, the Z-scheme MIL-125/Ag/BiOBr composite was synthesized via a directed liquid assembly method.
View Article and Find Full Text PDFLangmuir
January 2025
ESYCOM, CNRS-UMR 9007, Université Gustave Eiffel, F-77454 Marne-la-Vallée, France.
This study investigates the synthesis, characterization, and functional properties of well-aligned zinc oxide (ZnO) nanowires (NWs) obtained by a two-step hydrothermal method. ZnO NWs were grown on silicon substrates precoated with a ZnO seed layer. The growth process was conducted at 90 °C for different durations (2, 3, and 4 h) to examine the time-dependent evolution of the nanowire properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!