This Letter describes a novel metamaterial design by employing off-resonance and in-resonance excitation for a high-transmission terahertz-wave quarter-wave plate (QWP). The device is demonstrated with a thin film metamaterial with double-layer split ring resonators (SRRs). Different from a usual resonant metamaterial device, here we design the work frequency off from the inductor-capacitor (LC) resonance for the TE mode, while in a dipole resonance for the TM mode to obtain the artificial birefringence. Rectangular SRRs in this Letter provide a choice to optimize the off-resonance and in-resonance excitation, to assist the double-layer design for high transmission. Converting a linearly polarized wave to circular polarization with our QWP, the experiment confirms a transmittance of 0.8 and an ellipticity of 0.99 at 0.98 THz. The developed thin film device is flexible and has a thickness of 48 μm (sub-wavelength). This is an advantage for potential integration in systems where overall device compactness is required.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.43.002977DOI Listing

Publication Analysis

Top Keywords

off-resonance in-resonance
12
metamaterial design
8
high-transmission terahertz-wave
8
terahertz-wave quarter-wave
8
quarter-wave plate
8
in-resonance excitation
8
thin film
8
resonance mode
8
metamaterial
4
in-resonance metamaterial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!