Enhancer of zeste homolog 2-mediated (EZH2-mediated) epigenetic regulation of T cell differentiation and Treg function has been described previously; however, the role of EZH2 in T cell-mediated antitumor immunity, especially in the context of immune checkpoint therapy, is not understood. Here, we showed that genetic depletion of EZH2 in Tregs (FoxP3creEZH2fl/fl mice) leads to robust antitumor immunity. In addition, pharmacological inhibition of EZH2 in human T cells using CPI-1205 elicited phenotypic and functional alterations of the Tregs and enhanced cytotoxic activity of Teffs. We observed that ipilimumab (anti-CTLA-4) increased EZH2 expression in peripheral T cells from treated patients. We hypothesized that inhibition of EZH2 expression in T cells would increase the effectiveness of anti-CTLA-4 therapy, which we tested in murine models. Collectively, our data demonstrated that modulating EZH2 expression in T cells can improve antitumor responses elicited by anti-CTLA-4 therapy, which provides a strong rationale for a combination trial of CPI-1205 plus ipilimumab.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6118570PMC
http://dx.doi.org/10.1172/JCI99760DOI Listing

Publication Analysis

Top Keywords

ezh2 expression
16
expression cells
12
anti-ctla-4 therapy
12
antitumor immunity
8
inhibition ezh2
8
ezh2
6
cells
5
modulation ezh2
4
expression
4
cells improves
4

Similar Publications

TClC effectively suppresses the growth and metastasis of NSCLC via polypharmacology.

Bioact Mater

March 2025

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China.

Despite significant advances in targeted therapies and immunotherapies, non-small cell lung cancer (NSCLC) continues to present a global health challenge, with a modest five-year survival rate of 28 %, largely due to the emergence of treatment-resistant and metastatic tumors. In response, we synthesized a novel bioactive compound, ethyl 6-chlorocoumarin-3-carboxylyl L-theanine (TClC), which significantly inhibited NSCLC growth, epithelial mesenchymal transition (EMT), migration, and invasion and tumor growth and metastasis without inducing toxicity. TClC disrupts autocrine loops that promote tumor progression, particularly in stem-like CD133-positive NSCLC (CD133+ LC) cells, which are pivotal in tumor metastasis.

View Article and Find Full Text PDF

Humans have more than 270,000 lncRNAs. Among these, lncRNA HOXA-AS2 is considered a transformative gene involved in various cellular processes, including cell proliferation, apoptosis, migration, and invasion. Thus, it can be regarded as a potential tumor marker for both diagnosis and prognosis.

View Article and Find Full Text PDF

Objective: This study aims to explore the potential role of mesenchymal stem cells (MSCs) in the treatment of osteoarthritis (OA), particularly the function of the NOTCH1 signaling pathway in maintaining the stemness of MSCs and in chondrocyte differentiation.

Methods: Utilizing diverse analytical techniques on an osteoarthritis dataset, we unveil distinct gene expression patterns and regulatory relationships, shedding light on potential mechanisms underlying the disease. Techniques used include the culture of MSCs, induction of differentiation into chondrocytes, establishment of stable cell lines, Western Blot, and immunofluorescence.

View Article and Find Full Text PDF

Early missed abortion is defined as a pregnancy of ≤ 12 weeks in which there is a cessation of life in the developing embryo or fetus, leading to its retention within the uterine cavity without being spontaneously expelled promptly. This condition is commonly observed and significantly impacts human reproductive health. This study aimed to identify key genes related to ferroptosis that could serve as novel biomarkers for early missed abortion.

View Article and Find Full Text PDF

O-linked N-acetylglucosamine transferase (OGT)-catalyzed O-linked N-acetylglucosamine glycosylation (O-GlcNAcylation) is closely associated with diabetes progression. This study aims to investigate the mechanism of OGT in regulating endothelial dysfunction in gestational diabetes mellitus (GDM). Expressions of OGT, O-linked N-acetylglucosamine (O-GlcNAc), enhancer of zeste homolog 2 (EZH2), and HEK27me3 in human umbilical vein endothelial cells (HUVECs) and GDM-derived HUVECs (GDM-HUVECs) were assessed by western blot.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!