A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Contrast-enhanced ultrasound to visualize hemodynamic changes after rodent spinal cord injury. | LitMetric

OBJECTIVE Traumatic spinal cord injury (tSCI) causes an almost complete loss of blood flow at the site of injury (primary injury) as well as significant hypoperfusion in the penumbra of the injury. Hypoperfusion in the penumbra progresses after injury to the spinal cord and is likely to be a major contributor to progressive cell death of spinal cord tissue that was initially viable (secondary injury). Neuroprotective treatment strategies seek to limit secondary injury. Clinical monitoring of the temporal and spatial patterns of blood flow within the contused spinal cord is currently not feasible. The purpose of the current study was to determine whether ultrafast contrast-enhanced ultrasound (CEUS) Doppler allows for detection of local hemodynamic changes within an injured rodent spinal cord in real time. METHODS A novel ultrafast CEUS Doppler technique was developed utilizing a research ultrasound platform combined with a 15-MHz linear array transducer. Ultrafast plane-wave acquisitions enabled the separation of higher-velocity blood flow in macrocirculation from low-velocity flow within the microcirculation (tissue perfusion). An FDA-approved contrast agent (microbubbles) was used for visualization of local blood flow in real time. CEUS Doppler acquisition protocols were developed to characterize tissue perfusion both during contrast inflow and during the steady-state plateau. A compression injury of the thoracic spinal cord of adult rats was induced using iris forceps. RESULTS High-frequency ultrasound enabled visualization of spinal cord vessels such as anterior spinal arteries as well as central arteries (mean diameter [± SEM] 145.8 ± 10.0 µm; 76.2 ± 4.5 µm, respectively). In the intact spinal cord, ultrafast CEUS Doppler confirmed higher perfusion of the gray matter compared to white matter. Immediately after compression injury of the thoracic rodent spinal cord, spinal cord vessels were disrupted in an area of 1.93 ± 1.14 mm. Ultrafast CEUS Doppler revealed a topographical map of local tissue hypoperfusion with remarkable spatial resolution. Critical loss of perfusion, defined as less than 40% perfusion compared to the surrounding spared tissue, was seen within an area of 2.21 ± 0.6 mm. CONCLUSIONS In our current report, we introduce ultrafast CEUS Doppler for monitoring of spinal vascular structure and function in real time. Development and clinical implementation of this type of imaging could have a significant impact on the care of patients with tSCI.

Download full-text PDF

Source
http://dx.doi.org/10.3171/2018.1.SPINE171202DOI Listing

Publication Analysis

Top Keywords

spinal cord
44
ceus doppler
24
blood flow
16
ultrafast ceus
16
spinal
13
rodent spinal
12
real time
12
cord
11
injury
10
contrast-enhanced ultrasound
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!