The integration of high flexibility, high energy density and wide voltage window for solid-state supercapacitors remains a big challenge to date. Herein, ultrathin CoSeO3·H2O nanoribbons (thickness: ∼14 nm) with typical pseudocapacitive behavior were synthesized in a high yield by a solution-based refluxing process. Freestanding CoSeO3·H2O ribbon/hydroxylated multi-walled carbon nanotube (HWCNT) paper could be fabricated through a vacuum-assisted filtration strategy owing to its ultrathin nature, ribbon-like morphology and inherent flexibility. Unexpectedly, an asymmetric supercapacitor constructed from this as-prepared CoSeO3·H2O/HWCNT hybrid paper exhibits a high 2.4 V voltage window as well as excellent rate capability and cycle performance. The energy density of this device is 132.3 W h kg-1 at 960 W kg-1 with a stable cycling ability of up to 10 000 cycles, which is superior to those of almost all previously reported asymmetric supercapacitors based on freestanding paper. Furthermore, this supercapacitor shows outstanding bendability and mechanical stability at different bending degrees from 0° to 180° with no changes in capacitive behavior. Our work provides new opportunities for developing high-performance asymmetric supercapacitors with high energy density, wide voltage window, and high flexibility in a novel CoSeO3·H2O system for potential applications including flexible displays, collapsible mobile phones, and wearable equipment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8nr02924e | DOI Listing |
Biosens Bioelectron
January 2025
Department of Physics, Virginia Commonwealth University, Richmond, VA, 23284, USA; Institute for Sustainable Energy and Environment, Virginia Commonwealth University, Richmond, VA, 23284, USA. Electronic address:
Wearable devices designed for the somatosensory system aim to provide event-cue feedback electronics and therapeutic stimulation to the peripheral nervous system. This prompts a neurological response that is relayed back to the central nervous system. Unlike virtual reality tools, these devices precisely target peripheral mechanoreceptors by administering specific stimuli.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.
Li-rich cation-disordered rocksalt (DRX) materials introduce new paradigms in the design of high-capacity Li-ion battery cathode materials. However, DRX materials show strikingly sluggish kinetics due to random Li percolation with poor rate performance. Here, we demonstrate that Li stuffing into the tetrahedral sites of the Mn-based rocksalt skeleton injects a novel tetrahedron-octahedron-tetrahedron diffusion path, which acts as a low-energy-barrier hub to facilitate high-speed Li transport.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
Electrochemical oxidation via in situ-generated reactive oxygen species (ROS) is effective for the mineralization of refractory organic pollutants. However, the oxidation performance is usually limited by the low yield and utilization efficiency of ROS. Herein, a B/N-doped diamond (BND) flow-through electrode with enhanced SO/OH generation and utilization was designed for electrochemical oxidation of organic pollutants in sulfate solution.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Physics, Indian Institute of Technology Delhi (IITD), Delhi 110016, India.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are considered to be the most important processes in metal-air batteries and regenerative fuel cell devices. Metal-organic polymers are attracting interest as promising precursors of advanced metal/carbon electrocatalysts because of their hierarchical porous structure along with the integrated metal-carbon framework. We developed carbon-coated CNTs with Ni/Fe and Cu/Fe as active sites.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Aviation Oil and Material, Air Force Logistics Academy, 72 Xi Ge Road, Xuzhou, Jiangsu 221000, China.
Metal-air batteries desire highly active, durable, and low-cost oxygen reduction catalysts to replace expensive platinum (Pt). The Fe-N-C catalyst is recognized as the most promising candidate for Pt; however, its durability is hindered by carbon corrosion, while activity is restricted due to limited oxygen for the reaction. Herein, TiN is creatively designed to be hybridized with Fe-N-C (TiN/Fe-N-C) to relieve carbon corrosion and absorb more oxygen when catalyzing oxygen reduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!