Prostate cancer (PCa) is one of the most commonly diagnosed urological malignancies. However, there are limited therapies for PCa patients who develop biochemical recurrence after androgen deprivation therapy (ADT). In the present study, we investigated the therapeutic efficacy and mechanism of α-Viniferin (KCV), an oligostilbene of trimeric resveratrol, against human PCa cells and found that it markedly inhibited the proliferation of LNCaP, DU145, and PC-3 cancer cells in a time- and dose-dependent manner, and had a strong cytotoxicity in non-androgen-dependent PCa cells. In addition, KCV inhibited AR downstream expression in LNCaP cells, and inhibited activation of GR signaling pathway in DU145 and PC-3. Further investigation indicated that KCV could induce cancer cell apoptosis through AMPK-mediated activation of autophagy, and inhibited GR expression in castration-resistant prostate cancer(CRPC). These findings suggest that KCV may prove to be a novel and effective therapeutic agent for the treatment of CRPC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12032-018-1163-yDOI Listing

Publication Analysis

Top Keywords

expression castration-resistant
8
castration-resistant prostate
8
prostate cancer
8
cancer cells
8
pca cells
8
du145 pc-3
8
cells
5
α-viniferin activates
4
activates autophagic
4
autophagic apoptosis
4

Similar Publications

Unlabelled: Biomolecular condensates organize cellular environments and regulate key processes such as transcription. We previously showed that full-length androgen receptor (AR-FL), a major oncogenic driver in prostate cancer (PCa), forms nuclear condensates upon androgen stimulation in androgen-sensitive PCa cells. Disrupting these condensates impairs AR-FL transcriptional activity, highlighting their functional importance.

View Article and Find Full Text PDF

Advances in prostate-specific membrane antigen-targeted theranostics: from radionuclides to near-infrared fluorescence technology.

Front Immunol

January 2025

Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.

Prostate-Specific Membrane Antigen (PSMA) is a highly expressed and structurally unique target specific to prostate cancer (PCa). Diagnostic and therapeutic approaches in nuclear medicine, coupling PSMA ligands with radionuclides, have shown significant clinical success. PSMA-PET/CT effectively identifies tumors and metastatic lymph nodes for imaging purposes, while -PSMA-617 (Pluvicto) has received FDA approval for treating metastatic castration-resistant PCa (mCRPC).

View Article and Find Full Text PDF

An estrogen receptor β-targeted near-infrared probe for theranostic imaging of prostate cancer.

RSC Med Chem

December 2024

Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China

Estrogen receptor β (ERβ) is aberrantly expressed in castration-resistant prostate cancer (CRPC). Therefore, a diagnostic and therapeutic ERβ probe not only helps to reveal the complex role of ERβ in prostate cancer (PCa), but also promotes ERβ-targeted PCa therapy. Herein, we reported a novel ERβ-targeted near-infrared fluorescent probe D3 with both imaging and therapeutic functions, which had the advantages of high ERβ selectivity, good optical performance, and strong anti-interference ability.

View Article and Find Full Text PDF

Antiandrogen therapies are effectively used to treat advanced prostate cancer, but eventually cancer adaptation drives unresolved metastatic castration-resistant prostate cancer (mCRPC). Adipose tissue influences metabolic reprogramming in cancer and was proposed as a contributor to therapy resistance. Using extracellular matrix (ECM)-mimicking hydrogel coculture models of human adipocytes and prostate cancer cells, we show that adipocytes from subcutaneous or bone marrow fat have dissimilar responses under the antiandrogen Enzalutamide.

View Article and Find Full Text PDF

The Homeobox Transcription Factor NKX3.1 Displays an Oncogenic Role in Castration-Resistant Prostate Cancer Cells.

Cancers (Basel)

January 2025

Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA.

Background/objectives: Prostate cancer (PCa) is the second leading cause of cancer-related death in men. The increase in incidence rates of more advanced and aggressive forms of the disease year-to-year fuels urgency to find new therapeutic interventions and bolster already established ones. PCa is a uniquely targetable disease in that it is fueled by male hormones (androgens) that drive tumorigenesis via the androgen receptor or AR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!