Zoledronic acid is regarded as the most potent bisphosphonate and is widely used in patients with osteoporosis; however, its side effects, including acute-phase reactions, gastrointestinal complaints, renal dysfunction and bisphosphonate-associated osteonecrosis impair the safety and quality of life of patients. The present study was designed to determine the minimal effective concentration of zoledronic acid through testing the dose-dependent effects of zoledronic acid on osteoclast suppression. A primary culture of bone marrow mononuclear cells obtained from C57 mice (age, 6 weeks) was established and induced to form osteoclasts. The number of multinuclear cells was determined by tartrate-resistant acid phosphatase staining and compared among cultured marrow cells treated with different concentrations of zoledronic acid. Furthermore, the cellular properties, including adhesion, migration and bone resorption, were compared at the minimal effective concentration. At a concentration of 1×10 mol/l, zoledronic acid significantly inhibited the formation of osteoclasts. This inhibitory effect was further enhanced at the concentration of 1×10 mol/l. However, the inhibitory effect of zoledronic acid tapered at the concentration of 1×10 mol/l and there was no further dose-dependent increase. In addition, the concentration of 1×10 mol/l was sufficient to alter cellular functions, including cell adhesion, migration and bone resorption. In conclusion, zoledronic acid was effective in reducing osteoclast formation and suppressing cellular functions. The minimal effective concentration of zoledronic acid was 1 µmol/l. Based on these results, a comparable dosage should be explored in clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5996712PMC
http://dx.doi.org/10.3892/etm.2018.6120DOI Listing

Publication Analysis

Top Keywords

zoledronic acid
36
effective concentration
16
concentration 1×10
16
1×10 mol/l
16
concentration zoledronic
12
minimal effective
12
acid
10
zoledronic
9
concentration
8
adhesion migration
8

Similar Publications

Hypophosphatasia (HPP) is a congenital bone disease caused by tissue-nonspecific mutations in the alkaline phosphatase gene. It is classified into six types: severe perinatal, benign prenatal, infantile, pediatric, adult, and odonto. HPP with femoral hypoplasia on fetal ultrasonography, seizures, or early loss of primary teeth can be easily diagnosed.

View Article and Find Full Text PDF

Osteoporosis Caused by Monoallelic Variant of WNT1 Gene in Four Pediatric Patients.

Am J Med Genet A

January 2025

Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China.

Pediatric patients of autosomal dominant early onset osteoporosis conferred by heterozygous mutation in the WNT1 (OMIM: 615221) were rarely reported, and therapy in pediatrics is relatively inexperienced. The clinical and genotypic characteristics and treatment process of four children with osteoporosis caused by WNT1 monoallelic variation were analyzed. The patients admitted from June 2023 to January 2024.

View Article and Find Full Text PDF

Bisphosphonate-mineralized nano-IFNγ suppresses residual tumor growth caused by incomplete radiofrequency ablation through metabolically remodeling tumor-associated macrophages.

Theranostics

January 2025

Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Radiofrequency ablation (RFA), as a minimally invasive surgery strategy based on local thermal-killing effect, is widely used in the clinical treatment of multiple solid tumors. Nevertheless, RFA cannot achieve the complete elimination of tumor lesions with larger burden or proximity to blood vessels. Incomplete RFA (iRFA) has even been validated to promote residual tumor growth due to the suppressive tumor immune microenvironment (TIME).

View Article and Find Full Text PDF

Osteoporosis (OP) is a chronic inflammatory bone disease characterized by reduced bone structure and strength, leading to increased fracture risk. Effective therapies targeting both bone and cartilage are limited. This study compared the therapeutic effects of extracorporeal shockwave therapy (ESWT), bisphosphonate (Aclasta), and human Wharton jelly-derived mesenchymal stem cells (WJMSCs) in a rat model of OP.

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) is a rare genetic disorder affecting mainly type I collagen, which leads to bone fragility and deformities. OI patients also present craniofacial abnormalities such as macrocephaly and malocclusion. Recently, craniofacial dysmorphism was highlighted in the osteogenesis imperfecta mouse (oim), a validated model of the most severe form of OI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!