Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mitochondria are important organelles for the adaptation to energy demand that play a central role in bioenergetics metabolism. The mitochondrial architecture and mitochondrial machinery exhibits a high degree of adaptation in relation to nutrient availability. On the other hand, its disruption markedly affects energy homeostasis. The brain, more specifically the hypothalamus, is the main hub that controls energy homeostasis. Nevertheless, until now, almost all studies in relation to mitochondrial dysfunction and energy metabolism have focused in peripheral tissues like brown adipose tissue, muscle, and pancreas. In this review, we highlight the relevance of the hypothalamus and the influence on mitochondrial machinery in its function as well as its consequences in terms of alterations in both energy and metabolic homeostasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990598 | PMC |
http://dx.doi.org/10.3389/fendo.2018.00283 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!