Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessiono80bumuegbdlkoh8kk03ekj1q9j09hsk): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Saliva, which contains biological information, is considered a valuable diagnostic tool for local and systemic diseases and conditions because, similar to blood, it contains important molecules like DNA, RNA, and proteins. Exosomes are cell-derived vesicles 30-100 nm in diameter with substantial biological functions, including intracellular communication and signalling. These vesicles, which are present in bodily fluids, including saliva, are released upon fusion of multivesicular bodies (MVBs) with the cellular plasma membrane. Salivary diagnosis has notable advantages, which include noninvasiveness, ease of collection, absence of coagulation, and a similar content as plasma, as well as increased patient compliance compared to other diagnostic approaches. However, investigation of the roles of salivary exosomes is still in its early years. In this review, we first describe the characteristics of endocytosis and secretion of salivary exosomes, as well as database and bioinformatics analysis of exosomes. Then, we describe strategies for the isolation of exosomes from human saliva and the emerging role of salivary exosomes as potential biomarkers of oral and other systemic diseases. Given the ever-growing role of salivary exosomes, defining their functions and understanding their specific mechanisms will provide novel insights into possible applications of salivary exosomes in the diagnosis and treatment of systemic diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6001649 | PMC |
http://dx.doi.org/10.7150/ijbs.25018 | DOI Listing |
Int J Mol Sci
February 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
Alzheimer's disease (AD) is characterized by progressive cognition and behavior impairments. Diagnosing AD early is important for clinicians to slow down AD progression and preserve brain function. Biomarkers such as tau protein and amyloid-β peptide (Aβ) are used to aid diagnosis as clinical diagnosis often lags.
View Article and Find Full Text PDFFront Psychiatry
February 2025
Department of Biology, Claflin University, Orangeburg, SC, United States.
Introduction: The current study assessed the impact of self-reported stress measures on microRNA (miRNA) profiles in saliva exosomes. Saliva is one of the most accessible and non-invasive bodily fluids and exosomal miRNAs in saliva could be useful in (1) measuring stress states and (2) distinguishing between individuals suffering from high levels of chronic stress vs. adverse childhood experiences (ACEs).
View Article and Find Full Text PDFFront Mol Biosci
January 2025
Department of Biochemistry, Allahabad University, Allahabad, India.
Int J Mol Sci
January 2025
Department of Biohybrid & Medical Textiles, Institute of Applied Medical Engineering, RWTH Aachen University Hospital, 52074 Aachen, Germany.
Orthodontic tooth movement (OTM) is a complex process involving bone remodeling, and is regulated by various molecular factors, including microRNAs (miRNAs). These small, non-coding RNAs are critical in post-transcriptional gene regulation and have been implicated in the modulation of osteoclast and osteoblast activity during OTM. This study aimed to explore the expression profiles of salivary exosome-derived miRNAs during OTM to identify potential biomarkers that could provide insights into the biological processes involved in orthodontic tooth movement.
View Article and Find Full Text PDFInt J Nanomedicine
February 2025
Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China.
Purpose: Circular RNAs (circRNAs) are associated with the progression of tumors and hold promise as potential biomarkers for liquid biopsy. Among these, the role of circPRMT5 in head and neck squamous cell carcinoma (HNSCC) remains to be elucidated. This study aims to examine the role and underlying mechanisms of circPRMT5 in the progression of HNSCC and to assess its potential diagnostic value in saliva exosomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!