The effect of a mutation on the organism often depends on what other mutations are already present in its genome. Geneticists refer to such mutational interactions as epistasis. Pairwise epistatic effects have been recognized for over a century, and their evolutionary implications have received theoretical attention for nearly as long. However, pairwise epistatic interactions themselves can vary with genomic background. This is called higher-order epistasis, and its consequences for evolution are much less well understood. Here, we assess the influence that higher-order epistasis has on the topography of 16 published, biological fitness landscapes. We find that on average, their effects on fitness landscape declines with order, and suggest that notable exceptions to this trend may deserve experimental scrutiny. We conclude by highlighting opportunities for further theoretical and experimental work dissecting the influence that epistasis of all orders has on fitness landscape topography and on the efficiency of evolution by natural selection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986866 | PMC |
http://dx.doi.org/10.1007/s10955-018-1975-3 | DOI Listing |
BioData Min
December 2024
School of Computing, Queen's University, 557 Goodwin Hall, 21-25 Union St, Kingston, K7L 2N8, Ontario, Canada.
Background: Epistasis, the phenomenon where the effect of one gene (or variant) is masked or modified by one or more other genes, significantly contributes to the phenotypic variance of complex traits. Traditionally, epistasis has been modeled using the Cartesian epistatic model, a multiplicative approach based on standard statistical regression. However, a recent study investigating epistasis in obesity-related traits has identified potential limitations of the Cartesian epistatic model, revealing that it likely only detects a fraction of the genetic interactions occurring in natural systems.
View Article and Find Full Text PDFGenome Biol
December 2024
Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
We present MoCHI, a tool to fit interpretable models using deep mutational scanning data. MoCHI infers free energy changes, as well as interaction terms (energetic couplings) for specified biophysical models, including from multimodal phenotypic data. When a user-specified model is unavailable, global nonlinearities (epistasis) can be estimated from the data.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, USA.
Epistasis can profoundly influence evolutionary dynamics. Temporal genetic data, consisting of sequences sampled repeatedly from a population over time, provides a unique resource to understand how epistasis shapes evolution. However, detecting epistatic interactions from sequence data is technically challenging.
View Article and Find Full Text PDFGenetics
October 2024
Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
RNA polymerase II (Pol II) has a highly conserved domain, the trigger loop (TL), that controls transcription fidelity and speed. We previously probed pairwise genetic interactions between residues within and surrounding the TL for the purpose of understand functional interactions between residues and to understand how individual mutants might alter TL function. We identified widespread incompatibility between TLs of different species when placed in the Saccharomyces cerevisiae Pol II context, indicating species-specific interactions between otherwise highly conserved TLs and its surroundings.
View Article and Find Full Text PDFPLoS One
October 2024
College of Computer Science and Technology, Changchun University, Changchun City, Jilin Province, China.
Genome-wide association studies typically considers epistatic interactions as a crucial factor in exploring complex diseases. However, the current methods primarily concentrate on the detection of two-order epistatic interactions, with flaws in accuracy. In this work, we introduce a novel method called Epi-SSA, which can be better utilized to detect high-order epistatic interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!