Capacity fade in lithium-ion battery electrodes can result from a degradation mechanism in which the carbon black-binder network detaches from the active material. Here we present two approaches to visualize and quantify this detachment and use the experimental results to develop and validate a model that considers how the active particle size, the viscoelastic parameters of the composite electrode, the adhesion between the active particle and the carbon black-binder domain, and the solid electrolyte interphase growth rate impact detachment and capacity fade. Using carbon-silicon composite electrodes as a model system, we demonstrate X-ray nano-tomography and backscatter scanning electron microscopy with sufficient resolution and contrast to segment the pore space, active particles, and carbon black-binder domain and quantify delamination as a function of cycle number. The validated model is further used to discuss how detachment and capacity fade in high-capacity materials can be minimized through materials engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002379 | PMC |
http://dx.doi.org/10.1038/s41467-018-04477-1 | DOI Listing |
Small
January 2025
Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA.
Failure of the active particles is inherently electrochemo-mechanics dominated. This review comprehensively examines the electrochemo-mechanical degradation and failure mechanisms of active particles in high-energy density lithium-ion batteries. The study delves into the growth of passivating layers, such as the solid electrolyte interphase (SEI), and their impact on battery performance.
View Article and Find Full Text PDFNat Commun
January 2025
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.
Recent efforts to reduce battery costs and enhance sustainability have focused on eliminating Cobalt (Co) from cathode materials. While Co-free designs have shown notable success in polycrystalline cathodes, their impact on single crystalline (SC) cathodes remains less understood due to the significantly extended lithium diffusion pathways and the higher-temperature synthesis involved. Here, we reveal that removing Co from SC cathodes is structurally and electrochemically unfavorable, exhibiting unusual voltage fade behavior.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, China.
2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) derivatives are typical catholytes in aqueous organic redox flow batteries (AORFBs), but reported lifetime of them is limited. We find that the increase of Hirshfeld charge decreases the Gibbs free energy change (ΔG) values of side reactions of TEMPO, a near-linear relationship, and then exacerbates their degradation. Here we predict and synthesize a TEMPO derivative, namely TPP-TEMPO, by analyzing the Hirshfeld charge.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Developing multicharge and spin stabilization strategies is fundamental to enhancing the lifetime of functional organic materials, particularly for long-term energy storage in multiredox organic redox flow batteries. Current approaches are limited to the incorporation of electronic substituents to increase or decrease the overall electron density or bulky substituents to sterically shield reactive sites. With the aim to further expand the molecular toolbox for charge and spin stabilization, we introduce regioisomerism as a scaffold-diversifying design element that considers the collective and cumulative electronic and steric contributions from all of the substituents based on their relative regioisomeric arrangements.
View Article and Find Full Text PDFSmall
December 2024
School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!