Asparagus racemosus (Shatavari), belongs to the family Asparagaceae and is known as a "curer of hundred diseases" since ancient time. This plant has been exploited as a food supplement to enhance immune system and regarded as a highly valued medicinal plant in Ayurvedic medicine system for the treatment of various ailments such as gastric ulcers, dyspepsia, cardiovascular diseases, neurodegenerative diseases, cancer, as a galactogogue and against several other diseases. In depth metabolic fingerprinting of various parts of the plant led to the identification of 13 monoterpenoids exclusively present in roots. LC-MS profiling led to the identification of a significant number of steroidal saponins (33). However, we have also identified 16 triterpene saponins for the first time in A. racemosus. In order to understand the molecular basis of biosynthesis of major components, transcriptome sequencing from three different tissues (root, leaf and fruit) was carried out. Functional annotation of A. racemosus transcriptome resulted in the identification of 153 transcripts involved in steroidal saponin biosynthesis, 45 transcripts in triterpene saponin biosynthesis, 44 transcripts in monoterpenoid biosynthesis and 79 transcripts in flavonoid biosynthesis. These findings will pave the way for better understanding of the molecular basis of steroidal saponin, triterpene saponin, monoterpenoids and flavonoid biosynthesis in A. racemosus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002474 | PMC |
http://dx.doi.org/10.1038/s41598-018-27440-y | DOI Listing |
Alzheimers Dement
December 2024
University of Oregon, Eugene, OR, USA.
Background: Postmenopausal females who carry an APOE4 allele are at higher risk of late-onset Alzheimer's Disease (LOAD) compared to age-matched APOE4 males. Estrogen deficiency predisposes females to an increased risk of vascular, cognitive and metabolic impairments. Estrogen and APOE genotype are known to impact metabolic and mitochondrial function in the brain, but their effects on cerebral vessels are unknown.
View Article and Find Full Text PDFSci Rep
January 2025
The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.
Chronic kidney disease (CKD) stands as a formidable global health challenge, often advancing to end-stage renal disease (ESRD) with devastating morbidity and mortality. At the central of this progression lies podocyte injury, a critical determinant of glomerular dysfunction. Compound K (CK), a bioactive metabolite derived from ginsenoside, has emerged as a compelling candidate for nephroprotective therapy.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China.
Selenium nanoparticles (SeNPs) can be absorbed by plants, thereby affecting plant physiological activity, regulating gene expression, and altering metabolite content. However, the molecular mechanisms by which exogenous selenium affects coll.et Hemsl plant secondary metabolites remain unclear.
View Article and Find Full Text PDFInt J Med Sci
January 2025
School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan.
Excessive exercise can lead to fatigue, consequently affect exercise performance, and further have an adverse impact to human health. The synergistic effects of ginsenosides, salidroside, and syringin on improving exercise performance remain unknown. Hence, the effects of Chinese herb powder (CHP) which consisted of bioactive compounds such as ginsenosides (Rg1, Re, and Rb1), salidroside, and syringin on exercise performance, energy metabolism, tissue damage, antioxidant activity, and inflammatory cytokine were investigated in exhaustive exercise rats.
View Article and Find Full Text PDFArch Dermatol Res
December 2024
Department of Dermatology, The First Hospital of Hebei Medical University, No. 89, Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, China.
Melanoma (malignant melanoma, MM) is a highly aggressive tumor, ranking as the third most common cutaneous malignancy and characterized by high metastatic potential, high mortality rates, and poor prognosis. Solanine, a major steroidal alkaloid found in potatoes, has widely reported anticancer benefits, though its inhibitory effects on melanoma cells are less studied. This study aimed to observe the effects of solanine on the proliferation, apoptosis, and related apoptotic proteins in melanoma A375 and A2058 cells and to investigate its possible anti-tumor mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!