Ghost imaging is a technique used to produce an object's image without using a spatially resolving detector. Here we develop a technique we term "ghost cytometry," an image-free ultrafast fluorescence "imaging" cytometry based on a single-pixel detector. Spatial information obtained from the motion of cells relative to a static randomly patterned optical structure is compressively converted into signals that arrive sequentially at a single-pixel detector. Combinatorial use of the temporal waveform with the intensity distribution of the random pattern allows us to computationally reconstruct cell morphology. More importantly, we show that applying machine-learning methods directly on the compressed waveforms without image reconstruction enables efficient image-free morphology-based cytometry. Despite a compact and inexpensive instrumentation, image-free ghost cytometry achieves accurate and high-throughput cell classification and selective sorting on the basis of cell morphology without a specific biomarker, both of which have been challenging to accomplish using conventional flow cytometers.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aan0096DOI Listing

Publication Analysis

Top Keywords

ghost cytometry
8
single-pixel detector
8
cell morphology
8
cytometry ghost
4
ghost imaging
4
imaging technique
4
technique produce
4
produce object's
4
object's image
4
image spatially
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!