Detecting ocean-floor seismic activity is crucial for our understanding of the interior structure and dynamic behavior of Earth. However, 70% of the planet's surface is covered by water, and seismometer coverage is limited to a handful of permanent ocean bottom stations. We show that existing telecommunication optical fiber cables can detect seismic events when combined with state-of-the-art frequency metrology techniques by using the fiber itself as the sensing element. We detected earthquakes over terrestrial and submarine links with lengths ranging from 75 to 535 kilometers and a geographical distance from the earthquake's epicenter ranging from 25 to 18,500 kilometers. Implementing a global seismic network for real-time detection of underwater earthquakes requires applying the proposed technique to the existing extensive submarine optical fiber network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.aat4458 | DOI Listing |
Environ Monit Assess
December 2024
Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia.
Military operations have long been recognized to cause significant environmental consequences. However, research on the environmental impacts of military operations remains fragmented despite the rise of modern technologies, including remote sensing (RS) and geographic information system (GIS). Hence, this study sought to review the literature on using RS and GIS approaches to assess military operations' environmental impacts.
View Article and Find Full Text PDFSci Data
December 2024
Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
The Arctic Ocean is experiencing significant global warming, leading to reduced sea-ice cover, submarine permafrost thawing, and increased river discharge. The East Siberian Sea (ESS) undergoes more significant terrestrial inflow from coastal erosion and river runoff than other Arctic seas. Despite extensive research on environmental changes, microbial communities and their functions in the ESS, which are closely related to environmental conditions, remain largely unexplored.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
College of Marine Geosciences, Key Laboratory of Submarine Geosciences and Prospecting Technique, Ocean University of China, Qingdao 266100, China; Laboratory of Marine Geology, Laoshan National Laboratory, China.
J Environ Health Sci Eng
December 2024
School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48859 USA.
Microplastic pollution has emerged as a global environmental concern, with pervasive contamination in terrestrial and aquatic ecosystems. This review paper delves into the intricate dynamics of microplastics within anaerobic digestion systems, addressing their occurrence, impact, and potential mitigation strategies. The occurrence of microplastics in anaerobic digesters is widespread, entering these systems through diverse inputs, such as sewage sludge, organic waste, and etc.
View Article and Find Full Text PDFSci Adv
August 2024
Institute of Geosciences, Kiel University, Otto-Hahn-Platz 1, Kiel, Germany.
Sediment gravity flows are ubiquitous agents of transport, erosion, and deposition across Earth's surface, including terrestrial debris flows, snow avalanches, and submarine turbidity currents. Sediment gravity flows typically erode material along their path (bulking), which can dramatically increase their size, speed, and run-out distance. Hence, flow bulking is a first-order control on flow evolution and underpins predictive modeling approaches and geohazard assessments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!