Anemia is the defining feature in most patients with myelodysplastic syndromes (MDS), yet defects in erythropoiesis have not been well characterized. We examined freshly obtained bone marrow (BM) samples for stage-specific abnormalities during terminal erythroid differentiation (TED) from 221 samples (MDS, n = 205 from 113 unique patients; normal, n = 16) by measuring the surface expression of glycophorin A, band 3, and integrin α-4. Clinical and biologic associations were sought with presence or absence of TED and the specific stage of erythroid arrest. In 27% of MDS samples (56/205), there was no quantifiable TED documented by surface expression of integrin α-4 and band 3 by terminally differentiating erythroblasts. Absence of quantifiable TED was associated with a significantly worse overall survival (56 vs 103 months, = .0001) and mutations (7/23, < .05). In a multivariable Cox proportional hazards regression analysis, absence of TED remained independently significant across International Prognostic Scoring System-Revised (IPSS-R) categories, myeloid/erythroid ratio, and mutations in several genes. In 149/205 MDS samples, the proportion of cells undergoing TED did not follow the expected 1:2:4:8:16 doubling pattern in successive stages. Absence of TED emerged as a powerful independent prognostic marker of poor overall survival across all IPSS-R categories in MDS, and SRSF2 mutations were more frequently associated with absence of TED.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6020814 | PMC |
http://dx.doi.org/10.1182/bloodadvances.2018018440 | DOI Listing |
J Neurointerv Surg
January 2025
Department of Neuroradiology, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany.
Background: Intrasaccular devices are increasingly used in endovascular therapy of intracranial aneurysms, in particular wide-necked and ruptured aneurysms. The Trenza Embolization Device (TED) is an innovative intrasaccular device for medium- to large-sized aneurysms. Currently, literature about the TED is scarce.
View Article and Find Full Text PDFEndocrinology
January 2025
Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
The pathogenesis of Thyroid Eye Disease (TED) has been suggested as due to signal enhancement in orbital fibroblasts as a result of autoantibody-induced, synergistic, interaction between the TSH receptor (TSHR) and the IGF-1 receptor (IGF-1R). This interaction has been explained by a "receptor cross talk", mediated via β-arrestin binding. Here, we have examined if this interaction can be mediated via direct receptor contact using modeling and experimental approaches.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
January 2025
Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, Address: Hungary, 4032 Debrecen Nagyerdei krt. 98. Tel. +36-52-255-600.
Context: Increased orbital tissue volume due to matrix expansion, orbital fibroblast (OF) proliferation and adipocyte differentiation are the hallmarks of thyroid eye disease (TED). Their combination with the presence of hyaluronan-bound excess water in the constrains of the bony orbit results in increased intraorbital pressure. High intraorbital pressure, along with changes in the mechanical properties of orbital tissues, may lead to the activation of mechanosensitive receptors.
View Article and Find Full Text PDFFront Ophthalmol (Lausanne)
December 2024
Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
Purpose: Thyroid eye disease (TED) primarily occurs in hyperthyroid patients, sometimes resulting in poor visual prognosis. Although other autoimmune diseases have been reported to be associated with serum programmed cell death 1 (PD-1), the relationship with TED remains unknown. This study investigated the relationship between TED and immune checkpoint molecules.
View Article and Find Full Text PDFFront Immunol
December 2024
Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg-University (JGU) Medical Center, Mainz, Germany.
Background: The insulin-like growth factor 1 receptor (IGF-1R) and the thyrotropin receptor (TSH-R) are expressed on orbital cells and thyrocytes. These receptors are targeted in autoimmune-induced thyroid eye disease (TED). Effective therapeutic treatment of TED inhibits activation of the IGF-1R/TSH-R complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!